Hybrid Methods in Pattern Recognition

Hybrid Methods in Pattern Recognition

Author: Horst Bunke

Publisher: World Scientific

Published: 2002

Total Pages: 338

ISBN-13: 9810248326

DOWNLOAD EBOOK

The field of pattern recognition has seen enormous progress since its beginnings almost 50 years ago. A large number of different approaches have been proposed. Hybrid methods aim at combining the advantages of different paradigms within a single system. Hybrid Methods in Pattern Recognition is a collection of articles describing recent progress in this emerging field. It covers topics such as the combination of neural nets with fuzzy systems or hidden Markov models, neural networks for the processing of symbolic data structures, hybrid methods in data mining, the combination of symbolic and subsymbolic learning, and so on. Also included is recent work on multiple classifier systems. Furthermore, the book deals with applications in on-line and off-line handwriting recognition, remotely sensed image interpretation, fingerprint identification, and automatic text categorization.


Hybrid Computational Intelligence

Hybrid Computational Intelligence

Author: Siddhartha Bhattacharyya

Publisher: Academic Press

Published: 2020-03-05

Total Pages: 251

ISBN-13: 012818700X

DOWNLOAD EBOOK

Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. - Provides insights into the latest research trends in hybrid intelligent algorithms and architectures - Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction - Features hybrid intelligent applications in biomedical engineering and healthcare informatics


Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Author: Chi Hau Chen

Publisher: World Scientific

Published: 1999-03-12

Total Pages: 1045

ISBN-13: 9814497649

DOWNLOAD EBOOK

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.


Hybrid Image Processing Methods for Medical Image Examination

Hybrid Image Processing Methods for Medical Image Examination

Author: Venkatesan Rajinikanth

Publisher: CRC Press

Published: 2021-01-29

Total Pages: 177

ISBN-13: 1000300188

DOWNLOAD EBOOK

In view of better results expected from examination of medical datasets (images) with hybrid (integration of thresholding and segmentation) image processing methods, this work focuses on implementation of possible hybrid image examination techniques for medical images. It describes various image thresholding and segmentation methods which are essential for the development of such a hybrid processing tool. Further, this book presents the essential details, such as test image preparation, implementation of a chosen thresholding operation, evaluation of threshold image, and implementation of segmentation procedure and its evaluation, supported by pertinent case studies. Aimed at researchers/graduate students in the medical image processing domain, image processing, and computer engineering, this book: Provides broad background on various image thresholding and segmentation techniques Discusses information on various assessment metrics and the confusion matrix Proposes integration of the thresholding technique with the bio-inspired algorithms Explores case studies including MRI, CT, dermoscopy, and ultrasound images Includes separate chapters on machine learning and deep learning for medical image processing


Syntactic and Structural Pattern Recognition

Syntactic and Structural Pattern Recognition

Author: Horst Bunke

Publisher: World Scientific

Published: 1990

Total Pages: 568

ISBN-13: 9789971505660

DOWNLOAD EBOOK

This book is currently the only one on this subject containing both introductory material and advanced recent research results. It presents, at one end, fundamental concepts and notations developed in syntactic and structural pattern recognition and at the other, reports on the current state of the art with respect to both methodology and applications. In particular, it includes artificial intelligence related techniques, which are likely to become very important in future pattern recognition.The book consists of individual chapters written by different authors. The chapters are grouped into broader subject areas like “Syntactic Representation and Parsing”, “Structural Representation and Matching”, “Learning”, etc. Each chapter is a self-contained presentation of one particular topic. In order to keep the original flavor of each contribution, no efforts were undertaken to unify the different chapters with respect to notation. Naturally, the self-containedness of the individual chapters results in some redundancy. However, we believe that this handicap is compensated by the fact that each contribution can be read individually without prior study of the preceding chapters. A unification of the spectrum of material covered by the individual chapters is provided by the subject and author index included at the end of the book.


Connectionist Speech Recognition

Connectionist Speech Recognition

Author: Hervé A. Bourlard

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 329

ISBN-13: 1461532108

DOWNLOAD EBOOK

Connectionist Speech Recognition: A Hybrid Approach describes the theory and implementation of a method to incorporate neural network approaches into state of the art continuous speech recognition systems based on hidden Markov models (HMMs) to improve their performance. In this framework, neural networks (and in particular, multilayer perceptrons or MLPs) have been restricted to well-defined subtasks of the whole system, i.e. HMM emission probability estimation and feature extraction. The book describes a successful five-year international collaboration between the authors. The lessons learned form a case study that demonstrates how hybrid systems can be developed to combine neural networks with more traditional statistical approaches. The book illustrates both the advantages and limitations of neural networks in the framework of a statistical systems. Using standard databases and comparison with some conventional approaches, it is shown that MLP probability estimation can improve recognition performance. Other approaches are discussed, though there is no such unequivocal experimental result for these methods. Connectionist Speech Recognition is of use to anyone intending to use neural networks for speech recognition or within the framework provided by an existing successful statistical approach. This includes research and development groups working in the field of speech recognition, both with standard and neural network approaches, as well as other pattern recognition and/or neural network researchers. The book is also suitable as a text for advanced courses on neural networks or speech processing.


Handbook of Pattern Recognition and Computer Vision

Handbook of Pattern Recognition and Computer Vision

Author: C. H. Chen

Publisher: World Scientific

Published: 1993-08

Total Pages: 1000

ISBN-13: 9789810222765

DOWNLOAD EBOOK

"The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures."--BOOK JACKET.


Recent Advances in Hybrid Metaheuristics for Data Clustering

Recent Advances in Hybrid Metaheuristics for Data Clustering

Author: Sourav De

Publisher: John Wiley & Sons

Published: 2020-06-02

Total Pages: 196

ISBN-13: 1119551609

DOWNLOAD EBOOK

An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.


Structural Pattern Analysis

Structural Pattern Analysis

Author: R Mohr

Publisher: World Scientific

Published: 1990-01-01

Total Pages: 273

ISBN-13: 981450713X

DOWNLOAD EBOOK

This book contains a selection of 14 papers presented at the workshop organised by the International Association for Pattern Recognition (IAPR) Technical Committee on Syntactical and Structural Pattern Recognition, at Pont-à-Mousson, 1988. These papers which have been expanded, focus on both fundamental aspects and applications. They show that structural methods are a good framework for integrating both symbolic and numerical knowledge for modeling, recognition and also learning. The applications described are on document analysis, speech and image analysis.