This book discusses new trends in nanotechnology. It covers a wide range of topics starting from applications of nanomaterials in perovskite solar cells, pharmacy, and dentistry to self-assembled growth of GaN nanostructures on flexible metal foils by laser molecular beam epitaxy. It also includes other interesting topics such as advancement in carbon nanotubes; processing techniques, purification and industrial applications, metal di-chalcogenides for waste water treatment and recent advancement in nanostructured-based electrochemical genosensors for pathogen detection and many more. The book will be of great interest to researchers, professionals and students working in the areas of nanomaterials and nanotechnology.
In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.
This book discusses nanotechnology, its benefits and risks affecting the environment we live in today, and is divided into three parts: Part-I dealing with Sustainability, Part-II describing Toxicological Impacts, and Part-III discussing Nanomaterial-based Adsorbents. The crucial challenge of sustainability in various environmental elements is a global problem. This draws upon various issues of nanotechnology which impact sustainability of food, clean environment, green house gases, raw materials extraction, manufacturing and automobile industry. Growth in the production of nanomaterials to suit any of these applications is commendable. However, this does not negate the growth in their toxic effects. The nanotoxicity research in areas like medicine and agriculture industry is reviewed in detail in this book. Part-II discusses the toxic nature of widely used nanomaterials. Nanomaterials are enormously used in environmental remediation due to some of their distinct properties. These properties are described and discussed. Part-III of the book highlights the highly reactive and adsorbent properties of nanomaterials that enable them to be a competent agent in water and pollutant remediation. This book is mainly intended for researchers and students to acquire fairly comprehensive understanding and appreciation of nanotechnology dominance in sustainability challenges, with the aim to give the anticipatory governance of nanomaterials in our society and environment.
This book presents the basic and fundamental aspects of nanomaterials, its types, and classifications with respect to different factors. It contains methods of preparation and characterization of unique nanostructured materials. Consisting of six chapters, this book appeals to a wide readership from academia and industry professionals and is also useful to undergraduate and graduate students focusing on nanotechnology and nanomaterials, sustainable chemistry, energy conversion and storage, environmental protection, opto-electronics, sensors, and surface and interface science. It also appeals to readers who wish to know about the design of new types of materials with controlled nanostructures.
As long as humans have existed on the planet, they have looked at the world around them and wondered about much of what they saw. This book covers 21 different phenomena that have been observed in nature and puzzled about for decades.Only recently, with the development of the microscopes and other tools that allow us to study, evaluate, and test these observed phenomena at the molecular and atomic scale, have researchers been able to understand the science behind these observations. From the strength of a marine sponge found at the depths of the oceans, to the insect-hydroplaning surface of the edge of a plant, to the intricacies of the eyes of a moth, nanotechnology has allowed science to define and understand these amazing capabilities. In many cases, this new understanding has been applied to products and applications that benefit humans and the environment. For each of the five ecosystems— the ocean, insects, flora, fauna, and humans—the observations, study and understanding, and applications will be covered. The relationship between the more easily observed macro level and understanding what is found at the nanoscale will also be discussed.
This book addresses the application of nanotechnology to cosmetics. Edited by three respected experts in the field, the book begins with a general overview of the science behind cosmetics and skin care today, and of the status quo of nanotechnology in cosmetics. Subsequent chapters provide detailed information on the different nanoparticles currently used in cosmetics; the production and characterization of nanoparticles and nanocosmetics; and regulatory, safety and commercialization aspects. Given its scope, the book offers an indispensable guide for scientists in academia and industry, technicians and students, as well as a useful resource for decision-makers in the field and consumer organizations. Chapter 6 of this book is available open access under a CC BY 4.0 licence at link.springer.com.
Nanotechnology in biology and medicine: Research advancements & future perspectives is focused to provide an interdisciplinary, integrative overview on the developments made in nanotechnology till date along with the ongoing trends and the future prospects. It presents the basics, fundamental results/current applications and latest achievements on nanobiotechnological researches worldwide scientific era. One of the major goals of this book is to highlight the multifaceted issues on or surrounding of nanotechnology on the basis of case studies, academic and theoretical articles, technology transfer (patents and copyrights), innovation, economics and policy management. Moreover, a large variety of nanobio-analytical methods are presented as a core asset to the early career researchers. This book has been designed for scientists, academician, students and entrepreneurs engaged in nanotechnology research and development. Nonetheless, it should be of interest to a variety of scientific disciplines including agriculture, medicine, drug and food material sciences and consumer products. Features It provides a thoroughly comprehensive overview of all major aspects of nanobiotechnology, considering the technology, applications, and socio-economic context It integrates physics, biology, and chemistry of nanosystems It reflects the state-of-the-art in nanotechnological research (biomedical, food, agriculture) It presents the application of nanotechnology in biomedical field including diagnostics and therapeutics (drug discovery, screening and delivery) It also discusses research involving gene therapy, cancer nanotheranostics, nano sensors, lab-on-a-chip techniques, etc. It provides the information about health risks of nanotechnology and potential remedies. It offers a timely forum for peer-reviewed research with extensive references within each chapter
This book introduces the latest methods for the controlled growth of nanomaterial systems. The coverage includes simple and complex nanomaterial systems, ordered nanostructures and complex nanostructure arrays, and the essential conditions for the controlled growth of nanostructures with different morphologies, sizes, compositions, and microstructures. The book also discusses the dynamics of controlled growth and thermodynamic characteristics of two-dimensional nanorestricted systems. The authors introduce various novel synthesis methods for nanomaterials and nanostructures, such as hierarchical growth, heterostructures growth, doping growth and some developing template synthesis methods. In addition to discussing applications, the book reviews developing trends in nanomaterials and nanostructures.
This book reviews the application of Nanobiotechnology in the development of Nanomedicine, while also discussing the latest trends and challenges in the clinical translation of Nanomedicine. Nanomedicine refers to the application of Nanotechnology to medicine and holds tremendous potential for achieving improved efficiency, bioavailability, dose response, personalized medicine and enhanced safety as compared to conventional medicines. The book first introduces readers to the basic concepts of Nanomedicine, and to technological advances in and applications of Nanotechnology in treatment, diagnosis, monitoring, and drug delivery. In turn, it reviews the current status of multi-functionalization strategies for using Nanoparticles in the targeted delivery of therapeutic agents. The book’s third and final section focuses on the regulatory and safety challenges posed by Nanomedicine, including industry and regulatory agencies’ efforts to address them.
Nanotechnology in Dermatology is the first book of its kind to address all of the important and rapidly growing aspects of nanotechnology as it relates to dermatology. In the last few years there has been an explosion in research and development for products and devices related to nanotechnology, including numerous applications for consumers, physicians, patients, and industry. Applications are underway in medicine and dermatology for the early detection, diagnosis, and targeted therapy of disease, and nanodesigned materials and devices are expected to be faster, smaller, more powerful, more efficient, and more versatile than their traditional counterparts. Written by experts working in this exciting field, Nanotechnology in Dermatology specifically addresses nanotechnology in consumer skin care products, in the diagnosis of skin disease, in the treatment of skin disease, and the overall safety of nanotechnology. The book also discusses future trends of this ever-growing and changing field, providing dermatologists, pharmaceutical companies, and consumer cosmetics companies with a clear understanding of the advantages and challenges of nanotechnology today.