Synchronization in Complex Networks

Synchronization in Complex Networks

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.


Consensus and Synchronization in Complex Networks

Consensus and Synchronization in Complex Networks

Author: Ljupco Kocarev

Publisher: Springer

Published: 2013-01-18

Total Pages: 282

ISBN-13: 3642333591

DOWNLOAD EBOOK

In this book for the first time two scientific fields - consensus formation and synchronization of communications - are presented together and examined through their interrelational aspects, of rapidly growing importance. Both fields have indeed attracted enormous research interest especially in relation to complex networks. In networks of dynamic systems (or agents), consensus means to reach an agreement regarding a certain quantity of interest that depends on the state of all dynamical systems (agents). Consensus problems have a long history in control theory and computer sciences, and form the foundation of the field of distributed computing. Synchronization, which defines correlated-in-time behavior between different processes and roots going back to Huygens to the least, is now a highly popular, exciting and rapidly developing topic, with applications ranging from biological networks to mathematical epidemiology, and from processing information in the brain to engineering of communications devices. The book reviews recent finding in both fields and describes novel approaches to consensus formation, where consensus is realized as an instance of the nonlinear dynamics paradigm of chaos synchronization. The chapters are written by world-known experts in both fields and cover topics ranging from fundaments to various applications of consensus and synchronization.


Synchronization in Complex Networks of Nonlinear Dynamical Systems

Synchronization in Complex Networks of Nonlinear Dynamical Systems

Author: Chai Wah Wu

Publisher: World Scientific

Published: 2007

Total Pages: 168

ISBN-13: 9812709746

DOWNLOAD EBOOK

This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ideas from systems theory, linear algebra and graph theory and the synergy between them that are necessary to derive synchronization conditions. Many of the results, which have been obtained fairly recently and have until now not appeared in textbook form, are presented with complete proofs. This text is suitable for graduate-level study or for researchers who would like to be better acquainted with the latest research in this area. Sample Chapter(s). Chapter 1: Introduction (76 KB). Contents: Graphs, Networks, Laplacian Matrices and Algebraic Connectivity; Graph Models; Synchronization in Networks of Nonlinear Continuous-Time Dynamical Systems; Synchronization in Networks of Coupled Discrete-Time Systems; Synchronization in Network of Systems with Linear Dynamics; Agreement and Consensus Problems in Groups of Interacting Agents. Readership: Graduate students and researchers in physics, applied mathematics and engineering.


Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Patterns of Synchrony in Complex Networks of Adaptively Coupled Oscillators

Author: Rico Berner

Publisher:

Published: 2021

Total Pages: 203

ISBN-13: 9783030749392

DOWNLOAD EBOOK

The focus of this thesis is the interplay of synchrony and adaptivity in complex networks. Synchronization is a ubiquitous phenomenon observed in different contexts in physics, chemistry, biology, neuroscience, medicine, socioeconomic systems, and engineering. Most prominently, synchronization takes place in the brain, where it is associated with cognitive capacities like learning and memory, but is also a characteristic of neurological diseases like Parkinson and epilepsy. Adaptivity is common in many networks in nature and technology, where the connectivity changes in time, i.e., the strength of the coupling is continuously adjusted depending upon the dynamic state of the system, for instance synaptic neuronal plasticity in the brain. This research contributes to a fundamental understanding of various synchronization patterns, including hierarchical multifrequency clusters, chimeras and other partial synchronization states. After a concise survey of the fundamentals of adaptive and complex dynamical networks and synaptic plasticity, in the first part of the thesis the existence and stability of cluster synchronization in globally coupled adaptive networks is discussed for simple paradigmatic phase oscillators as well as for a more realistic neuronal oscillator model with spike-timing dependent plasticity. In the second part of the thesis the interplay of adaptivity and connectivity is investigated for more complex network structures like nonlocally coupled rings, random networks, and multilayer systems. Besides presenting a plethora of novel, sometimes intriguing patterns of synchrony, the thesis makes a number of pioneering methodological advances, where rigorous mathematical proofs are given in the Appendices. These results are of interest not only from a fundamental point of view, but also with respect to challenging applications in neuroscience and technological systems.


Swarm Stability and Optimization

Swarm Stability and Optimization

Author: Veysel Gazi

Publisher: Springer Science & Business Media

Published: 2011-02-01

Total Pages: 299

ISBN-13: 3642180418

DOWNLOAD EBOOK

Swarming species such as flocks of birds or schools of fish exhibit fascinating collective behaviors during migration and predator avoidance. Similarly, engineered multi-agent dynamic systems such as groups of autonomous ground, underwater, or air vehicles (“vehicle swarms”) exhibit sophisticated collective behaviors while maneuvering. In this book we show how to model and control a wide range of such multi-agent dynamic systems and analyze their collective behavior using both stability theoretic and simulation-based approaches. In particular, we investigate problems such as group aggregation, social foraging, formation control, swarm tracking, distributed agreement, and engineering optimization inspired by swarm behavior.


Bio A.I. - From Embodied Cognition to Enactive Robotics

Bio A.I. - From Embodied Cognition to Enactive Robotics

Author: Adam Safron

Publisher: Frontiers Media SA

Published: 2023-12-08

Total Pages: 392

ISBN-13: 2832536166

DOWNLOAD EBOOK

Even before the deep learning revolution, the landscape of artificial intelligence (AI) was already changing drastically in the 90s. Embodied intelligence, it was proposed, must play a crucial role in the design of intelligent machines. This new wave was inspired by what is today known as Embodied and Enactive Cognitive Science or E-Cognition, which considers that cognitive activity does not reduce to the intellectual capacities of agents being able to represent their environments. E-cognition set AI and robotics in a new direction, in which intelligent machines are required to interact with the environment, and where this interaction does not reduce to explicit representations or prespecified algorithms. These ideas revolutionized the way we think about intelligent machines and cognition, but these theoretical advances are only partially reflected in modern approaches to AI and machine learning (ML). Despite deeply impressive achievements, AI/ML still struggles to recapitulate the kinds of intelligence we find in natural systems, whether we are considering individual insects (e.g. simultaneous localization and mapping), or swarm behaviour (e.g. forum sensing and ensemble inferences), and especially the kinds of flexibility and high-level reasoning characteristic of human cognition.


Handbook of Brain Connectivity

Handbook of Brain Connectivity

Author: Viktor K. Jirsa

Publisher: Springer

Published: 2007-08-16

Total Pages: 525

ISBN-13: 3540715126

DOWNLOAD EBOOK

Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring structural and functional connectivity in the brain. Part three provides an overview of the analysis techniques currently available and highlights new developments. Part four introduces the application and translation of the concepts of brain connectivity to behavior, cognition and the clinical domain.


Graph Spectra for Complex Networks

Graph Spectra for Complex Networks

Author: Piet van Mieghem

Publisher: Cambridge University Press

Published: 2010-12-02

Total Pages: 363

ISBN-13: 1139492276

DOWNLOAD EBOOK

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.


The Rapture of the Nerds

The Rapture of the Nerds

Author: Cory Doctorow

Publisher: Macmillan

Published: 2012-09-04

Total Pages: 353

ISBN-13: 0765329107

DOWNLOAD EBOOK

From the two defining personalities of post-cyberpunk SF, a brilliant collaboration to rival 1987's The Difference Engine by William Gibson and Bruce Sterling