Meaning in Mathematics Education

Meaning in Mathematics Education

Author: Jeremy Kilpatrick

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 267

ISBN-13: 0387240403

DOWNLOAD EBOOK

What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed—theoretical and practical—and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge. This book presents a wide variety of theoretical reflections and research results about meaning in mathematics and mathematics education based on long-term and collective reflection by the group of authors as a whole. It is the outcome of the work of the BACOMET (BAsic COmponents of Mathematics Education for Teachers) group who spent several years deliberating on this topic. The ten chapters in this book, both separately and together, provide a substantial contribution to clarifying the complex issue of meaning in mathematics education. This book is of interest to researchers in mathematics education, graduate students of mathematics education, under graduate students in mathematics, secondary mathematics teachers and primary teachers with an interest in mathematics.


Critical Issues in Mathematics Education

Critical Issues in Mathematics Education

Author: Bharath Sriraman

Publisher: IAP

Published: 2009-06-01

Total Pages: 502

ISBN-13: 1607522187

DOWNLOAD EBOOK

The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.


Perspectives on Practice and Meaning in Mathematics and Science Classrooms

Perspectives on Practice and Meaning in Mathematics and Science Classrooms

Author: D. Clarke

Publisher: Springer Science & Business Media

Published: 2001-03-31

Total Pages: 378

ISBN-13: 9780792369394

DOWNLOAD EBOOK

This is a variegated picture of science and mathematics classrooms that challenges a research tradition that converges on the truth. The reader is surrounded with different images of the classroom and will find his beliefs confirmed or challenged. The book is for educational researchers, research students, and practitioners with an interest in optimizing the effectiveness of classrooms as environments for learning.


Affect and Mathematics Education

Affect and Mathematics Education

Author: Markku S. Hannula

Publisher: Springer

Published: 2019-06-03

Total Pages: 437

ISBN-13: 3030137619

DOWNLOAD EBOOK

This open access book, inspired by the ICME 13 topic study group “Affect, beliefs and identity in mathematics education”, presents the latest trends in research in the area. Following an introduction and a survey chapter providing a concise overview of the state-of-art in the field of mathematics-related affect, the book is divided into three main sections: motivation and values, engagement, and identity in mathematics education. Each section comprises several independent chapters based on original research, as well as a reflective commentary by an expert in the area. Collectively, the chapters present a rich methodological spectrum, from narrative analysis to structural equation modelling. In the final chapter, the editors look ahead to future directions in the area of mathematics-education-related affect. It is a timely resource for all those interested in the interaction between affect and mathematics education.


Windows on Mathematical Meanings

Windows on Mathematical Meanings

Author: Richard Noss

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 288

ISBN-13: 9400916965

DOWNLOAD EBOOK

This book challenges some of the conventional wisdoms on the learning of mathematics. The authors use the computer as a window onto mathematical meaning-making. The pivot of their theory is the idea of webbing, which explains how someone struggling with a new mathematical idea can draw on supportive knowledge, and reconciles the individual's role in mathematical learning with the part played by epistemological, social and cultural forces.


Figuring Out Fluency in Mathematics Teaching and Learning, Grades K-8

Figuring Out Fluency in Mathematics Teaching and Learning, Grades K-8

Author: Jennifer M. Bay-Williams

Publisher: Corwin

Published: 2021-03-02

Total Pages: 265

ISBN-13: 1071818430

DOWNLOAD EBOOK

Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.


The Emergence of Mathematical Meaning

The Emergence of Mathematical Meaning

Author: Paul Cobb

Publisher: Routledge

Published: 2012-12-06

Total Pages: 313

ISBN-13: 1136486100

DOWNLOAD EBOOK

This book grew out of a five-year collaboration between groups of American and German mathematics educators. The central issue addressed accounting for the messiness and complexity of mathematics learning and teaching as it occurs in classroom situations. The individual chapters are based on the view that psychological and sociological perspectives each tell half of a good story. To unify these concepts requires a combined approach that takes individual students' mathematical activity seriously while simultaneously seeing their activity as necessarily socially situated. Throughout their collaboration, the chapter authors shared a single set of video recordings and transcripts made in an American elementary classroom where instruction was generally compatible with recent reform recommendations. As a consequence, the book is much more than a compendium of loosely related papers. The combined approach taken by the authors draws on interactionism and ethnomethodology. Thus, it constitutes an alternative to Vygotskian and Soviet activity theory approaches. The specific topics discussed in individual chapters include small group collaboration and learning, the teacher's practice and growth, and language, discourse, and argumentation in the mathematics classroom. This collaborative effort is valuable to educators and psychologists interested in situated cognition and the relation between sociocultural processes and individual psychological processes.


Encyclopedia of the Sciences of Learning

Encyclopedia of the Sciences of Learning

Author: Norbert M. Seel

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 3643

ISBN-13: 1441914277

DOWNLOAD EBOOK

Over the past century, educational psychologists and researchers have posited many theories to explain how individuals learn, i.e. how they acquire, organize and deploy knowledge and skills. The 20th century can be considered the century of psychology on learning and related fields of interest (such as motivation, cognition, metacognition etc.) and it is fascinating to see the various mainstreams of learning, remembered and forgotten over the 20th century and note that basic assumptions of early theories survived several paradigm shifts of psychology and epistemology. Beyond folk psychology and its naïve theories of learning, psychological learning theories can be grouped into some basic categories, such as behaviorist learning theories, connectionist learning theories, cognitive learning theories, constructivist learning theories, and social learning theories. Learning theories are not limited to psychology and related fields of interest but rather we can find the topic of learning in various disciplines, such as philosophy and epistemology, education, information science, biology, and – as a result of the emergence of computer technologies – especially also in the field of computer sciences and artificial intelligence. As a consequence, machine learning struck a chord in the 1980s and became an important field of the learning sciences in general. As the learning sciences became more specialized and complex, the various fields of interest were widely spread and separated from each other; as a consequence, even presently, there is no comprehensive overview of the sciences of learning or the central theoretical concepts and vocabulary on which researchers rely. The Encyclopedia of the Sciences of Learning provides an up-to-date, broad and authoritative coverage of the specific terms mostly used in the sciences of learning and its related fields, including relevant areas of instruction, pedagogy, cognitive sciences, and especially machine learning and knowledge engineering. This modern compendium will be an indispensable source of information for scientists, educators, engineers, and technical staff active in all fields of learning. More specifically, the Encyclopedia provides fast access to the most relevant theoretical terms provides up-to-date, broad and authoritative coverage of the most important theories within the various fields of the learning sciences and adjacent sciences and communication technologies; supplies clear and precise explanations of the theoretical terms, cross-references to related entries and up-to-date references to important research and publications. The Encyclopedia also contains biographical entries of individuals who have substantially contributed to the sciences of learning; the entries are written by a distinguished panel of researchers in the various fields of the learning sciences.


Mathematics Education as a Research Domain: A Search for Identity

Mathematics Education as a Research Domain: A Search for Identity

Author: Anna Sierpinska

Publisher: Springer

Published: 2013-03-14

Total Pages: 244

ISBN-13: 9401151946

DOWNLOAD EBOOK

No one disputes how important it is, in today's world, to prepare students to un derstand mathematics as well as to use and communicate mathematics in their future lives. That task is very difficult, however. Refocusing curricula on funda mental concepts, producing new teaching materials, and designing teaching units based on 'mathematicians' common sense' (or on logic) have not resulted in a better understanding of mathematics by more students. The failure of such efforts has raised questions suggesting that what was missing at the outset of these proposals, designs, and productions was a more profound knowledge of the phenomena of learning and teaching mathematics in socially established and culturally, politically, and economically justified institutions - namely, schools. Such knowledge cannot be built by mere juxtaposition of theories in disci plines such as psychology, sociology, and mathematics. Psychological theories focus on the individual learner. Theories of sociology of education look at the general laws of curriculum development, the specifics of pedagogic discourse as opposed to scientific discourse in general, the different possible pedagogic rela tions between the teacher and the taught, and other general problems in the inter face between education and society. Mathematics, aside from its theoretical contents, can be looked at from historical and epistemological points of view, clarifying the genetic development of its concepts, methods, and theories. This view can shed some light on the meaning of mathematical concepts and on the difficulties students have in teaching approaches that disregard the genetic development of these concepts.


Semiotics as a Tool for Learning Mathematics

Semiotics as a Tool for Learning Mathematics

Author: Adalira Sáenz-Ludlow

Publisher: Springer

Published: 2015-12-17

Total Pages: 224

ISBN-13: 9463003371

DOWNLOAD EBOOK

Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.