Mathematical Analysis for Engineers

Mathematical Analysis for Engineers

Author: Bernard Dacorogna

Publisher: World Scientific Publishing Company

Published: 2012-06-18

Total Pages: 370

ISBN-13: 184816923X

DOWNLOAD EBOOK

This book follows an advanced course in analysis (vector analysis, complex analysis and Fourier analysis) for engineering students, but can also be useful, as a complement to a more theoretical course, to mathematics and physics students. The first three parts of the book represent the theoretical aspect and are independent of each other. The fourth part gives detailed solutions to all exercises that are proposed in the first three parts. Foreword Foreword (71 KB) Sample Chapter(s) Chapter 1: Differential Operators of Mathematical Physics (272 KB) Chapter 9: Holomorphic functions and Cauchy–Riemann equations (248 KB) Chapter 14: Fourier series (281 KB) Request Inspection Copy Contents: Vector Analysis:Differential Operators of Mathematical PhysicsLine IntegralsGradient Vector FieldsGreen TheoremSurface IntegralsDivergence TheoremStokes TheoremAppendixComplex Analysis:Holomorphic Functions and Cauchy–Riemann EquationsComplex IntegrationLaurent SeriesResidue Theorem and ApplicationsConformal MappingFourier Analysis:Fourier SeriesFourier TransformLaplace TransformApplications to Ordinary Differential EquationsApplications to Partial Differential EquationsSolutions to the Exercises:Differential Operators of Mathematical PhysicsLine IntegralsGradient Vector FieldsGreen TheoremSurface IntegralsDivergence TheoremStokes TheoremHolomorphic Functions and Cauchy–Riemann EquationsComplex IntegrationLaurent SeriesResidue Theorem and ApplicationsConformal MappingFourier SeriesFourier TransformLaplace TransformApplications to Ordinary Differential EquationsApplications to Partial Differential Equations Readership: Undergraduate students in analysis & differential equations, complex analysis, civil, electrical and mechanical engineering.


Mathematical Analysis in Engineering

Mathematical Analysis in Engineering

Author: Chiang C. Mei

Publisher: Cambridge University Press

Published: 1997-01-13

Total Pages: 484

ISBN-13: 9780521587983

DOWNLOAD EBOOK

A paperback edition of successful and well reviewed 1995 graduate text on applied mathematics for engineers.


Harmonic Analysis for Engineers and Applied Scientists

Harmonic Analysis for Engineers and Applied Scientists

Author: Gregory S. Chirikjian

Publisher: Courier Dover Publications

Published: 2016-07-20

Total Pages: 881

ISBN-13: 0486795640

DOWNLOAD EBOOK

Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.


Algebra and Analysis for Engineers and Scientists

Algebra and Analysis for Engineers and Scientists

Author: Anthony N. Michel

Publisher: Springer Science & Business Media

Published: 2009-12-24

Total Pages: 500

ISBN-13: 0817647074

DOWNLOAD EBOOK

Written for graduate and advanced undergraduate students in engineering and science, this classic book focuses primarily on set theory, algebra, and analysis. Useful as a course textbook, for self-study, or as a reference, the work is intended to familiarize engineering and science students with a great deal of pertinent and applicable mathematics in a rapid and efficient manner without sacrificing rigor. The book is divided into three parts: set theory, algebra, and analysis. It offers a generous number of exercises integrated into the text and features applications of algebra and analysis that have a broad appeal.


Numerical Analysis for Engineers and Scientists

Numerical Analysis for Engineers and Scientists

Author: G. Miller

Publisher: Cambridge University Press

Published: 2014-05-29

Total Pages: 583

ISBN-13: 1107021081

DOWNLOAD EBOOK

A graduate-level introduction balancing theory and application, providing full coverage of classical methods with many practical examples and demonstration programs.


Elements of Advanced Mathematical Analysis for Physics and Engineering

Elements of Advanced Mathematical Analysis for Physics and Engineering

Author: Filippo Gazzola

Publisher: Società Editrice Esculapio

Published: 2013-09-23

Total Pages: 329

ISBN-13: 8874886454

DOWNLOAD EBOOK

Deep comprehension of applied sciences requires a solid knowledge of Mathematical Analysis. For most of high level scientific research, the good understanding of Functional Analysis and weak solutions to differential equations is essential. This book aims to deal with the main topics that are necessary to achieve such a knowledge. Still, this is the goal of many other texts in advanced analysis; and then, what would be a good reason to read or to consult this book? In order to answer this question, let us introduce the three Authors. Alberto Ferrero got his degree in Mathematics in 2000 and presently he is researcher in Mathematical Analysis at the Universit`a del Piemonte Orientale. Filippo Gazzola got his degree in Mathematics in 1987 and he is now full professor in Mathematical Analysis at the Politecnico di Milano. Maurizio Zanotti got his degree in Mechanical Engineering in 2004 and presently he is structural and machine designer and lecturer professor in Mathematical Analysis at the Politecnico di Milano. The three Authors, for the variety of their skills, decided to join their expertises to write this book. One of the reasons that should encourage its reading is that the presentation turns out to be a reasonable compromise among the essential mathematical rigor, the importance of the applications and the clearness, which is necessary to make the reference work pleasant to the readers, even to the inexperienced ones. The range of treated topics is quite wide and covers the main basic notions of the scientific research which is based upon mathematical models. We start from vector spaces and Lebesgue integral to reach the frontier of theoretical research such as the study of critical exponents for semilinear elliptic equations and recent problems in fluid dynamics. This long route passes through the theory of Banach and Hilbert spaces, Sobolev spaces, differential equations, Fourier and Laplace transforms, before which we recall some appropriate tools of Complex Analysis. We give all the proofs that have some didactic or applicative interest, while we omit the ones which are too technical or require too high level knowledge. This book has the ambitious purpose to be useful to a broad variety of readers. The first possible beneficiaries are of course the second or third year students of a scientific course of degree: in what follows they will find the topics that are necessary to approach more advanced studies in Mathematics and in other fields, especially Physics and Engineering. This text could be also useful to graduate students who want to start a Ph.D. course: indeed it contains the matter of a multidisciplinary Ph.D. course given by Filippo Gazzola for several years at Politecnico di Milano. Finally, this book could be addressed also to the ones who have already left education far-back but occasionally need to use mathematical tools: we refer both to university professors and their research, and to professionals and designers who want to model a certain phenomenon, but also to the nostalgics of the good old days when they were students. It is precisely for this last type of reader that we have also reported some elementary topics, such as the properties of numerical sets and of the integrals; moreover, every chapter is provided with examples and specific exercises aimed at the involvement of the reader. Let us start immediately inviting the reader to find an “anomaly” among the six formulas appearing in the cover. This book is the translation from Italian of the book ”Elementi di Analisi Superiore per la Fisica e l’Ingegneria”. The translation is due to Ilaria Lucardesi.


Advanced Engineering Analysis

Advanced Engineering Analysis

Author: L. P. Lebedev

Publisher: World Scientific

Published: 2012

Total Pages: 500

ISBN-13: 981439047X

DOWNLOAD EBOOK

Advanced Engineering Analysis: The Calculus of Variations and Functional Analysis with Applications in Mechanics Advanced Engineering Analysis is a textbook on modern engineering analysis, covering the calculus of variations, functional analysis, and control theory, as well as applications of these disciplines to mechanics. The book offers a brief and concise, yet complete explanation of essential theory and applications. It contains exercises with hints and solutions, ideal for self-study. Book jacket.


Mathematical Methods for Engineers and Scientists 2

Mathematical Methods for Engineers and Scientists 2

Author: Kwong-Tin Tang

Publisher: Springer Science & Business Media

Published: 2006-11-30

Total Pages: 345

ISBN-13: 3540302689

DOWNLOAD EBOOK

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.


Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I

Author: Carl M. Bender

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 605

ISBN-13: 1475730691

DOWNLOAD EBOOK

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.