Functional Equations, Inequalities and Applications

Functional Equations, Inequalities and Applications

Author: Themistocles M. Rassias

Publisher: Springer Science & Business Media

Published: 2003-09-30

Total Pages: 244

ISBN-13: 9781402015786

DOWNLOAD EBOOK

Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.


Functional Equations and Inequalities with Applications

Functional Equations and Inequalities with Applications

Author: Palaniappan Kannappan

Publisher: Springer Science & Business Media

Published: 2009-06-10

Total Pages: 817

ISBN-13: 0387894926

DOWNLOAD EBOOK

Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.


Functional Equations and Inequalities

Functional Equations and Inequalities

Author: Themistocles RASSIAS

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 335

ISBN-13: 9401143412

DOWNLOAD EBOOK

This volume provides an extensive study of some of the most important topics of current interest in functional equations and inequalities. Subjects dealt with include: a Pythagorean functional equation, a functional definition of trigonometric functions, the functional equation of the square root spiral, a conditional Cauchy functional equation, an iterative functional equation, the Hille-type functional equation, the polynomial-like iterative functional equation, distribution of zeros and inequalities for zeros of algebraic polynomials, a qualitative study of Lobachevsky's complex functional equation, functional inequalities in special classes of functions, replicativity and function spaces, normal distributions, some difference equations, finite sums, decompositions of functions, harmonic functions, set-valued quasiconvex functions, the problems of expressibility in some extensions of free groups, Aleksandrov problem and mappings which preserve distances, Ulam's problem, stability of some functional equation for generalized trigonometric functions, Hyers-Ulam stability of Hosszú's equation, superstability of a functional equation, and some demand functions in a duopoly market with advertising. Audience: This book will be of interest to mathematicians and graduate students whose work involves real functions, functions of a complex variable, functional analysis, integral transforms, and operational calculus.


Functional Equations, Inequalities and Applications

Functional Equations, Inequalities and Applications

Author: Themistocles RASSIAS

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 221

ISBN-13: 940170225X

DOWNLOAD EBOOK

Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.


Handbook of Functional Equations

Handbook of Functional Equations

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2014-11-18

Total Pages: 555

ISBN-13: 1493912461

DOWNLOAD EBOOK

As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the Riemann–Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz–Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher’s information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes.


Functional Inequalities: New Perspectives and New Applications

Functional Inequalities: New Perspectives and New Applications

Author: Nassif Ghoussoub

Publisher: American Mathematical Soc.

Published: 2013-04-09

Total Pages: 331

ISBN-13: 0821891529

DOWNLOAD EBOOK

"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.


Handbook of Functional Equations

Handbook of Functional Equations

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2014-11-21

Total Pages: 394

ISBN-13: 1493912860

DOWNLOAD EBOOK

This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.


Functional Equations And Inequalities: Solutions And Stability Results

Functional Equations And Inequalities: Solutions And Stability Results

Author: John Michael Rassias

Publisher: World Scientific Publishing Company

Published: 2017-03-20

Total Pages: 397

ISBN-13: 9813147628

DOWNLOAD EBOOK

This volume covers the topic in functional equations in a broad sense and is written by authors who are in this field for the past 50 years. It contains the basic notions of functional equations, the methods of solving functional equations, the growth of functional equations in the last four decades and an extensive reference list on fundamental research papers that investigate the stability results of different types of functional equations and functional inequalities. This volume starts by taking the reader from the fundamental ideas to higher levels of results that appear in recent research papers. Its step-by-step expositions are easy for the reader to understand and admire the elegant results and findings on the stability of functional equations.


Functional Equations on Hypergroups

Functional Equations on Hypergroups

Author: László Székelyhidi

Publisher: World Scientific

Published: 2013

Total Pages: 210

ISBN-13: 9814407003

DOWNLOAD EBOOK

The theory of hypergroups is a rapidly developing area of mathematics due to its diverse applications in different areas like probability, harmonic analysis, etc. This book exhibits the use of functional equations and spectral synthesis in the theory of hypergroups. It also presents the fruitful consequences of this delicate "marriage" where the methods of spectral analysis and synthesis can provide an efficient tool in characterization problems of function classes on hypergroups. This book is written for the interested reader who has open eyes for both functional equations and hypergroups, and who dares to enter a new world of ideas, a new world of methods - and, sometimes, a new world of unexpected difficulties.