Coupled Processes Associated with Nuclear Waste Repositories

Coupled Processes Associated with Nuclear Waste Repositories

Author: Chin-Fu Tsang

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 816

ISBN-13: 0323142400

DOWNLOAD EBOOK

Coupled Processes Associated with Nuclear Waste Repositories covers the proceedings of the 1985 International Symposium on Coupled Processes Associated with Nuclear Waste Repositories. The study of the behavior of geologic waste repositories is based on the coupled thermal, hydrologic, chemical, and mechanical processes that may occur in these systems. The symposium is sponsored by the U.S. Nuclear Regulatory Commission and the U.S. Department of Energy, in collaboration with the Nuclear Energy Authority in Paris and the Commission of the European Communities in Brussels. This book is organized into five parts encompassing 58 chapters. The introductory parts survey the concerns and interests from American and European agencies that have responsibilities in nuclear waste isolation research. These parts also provide overviews of coupled processes, with a particular emphasis on hydrology, geomechanics, and geochemistry. These topics are followed by summaries of major field projects on nuclear waste repositories in the U.S.A., France, Sweden, Canada, Belgium, and Switzerland. The fourth part covers considerable research results from topical studies of particular coupled processes. The concluding part provides the comments and discussion of various international researchers on the subject. This work will be of value to geology, hydrology, chemistry, thermodynamics, and rock mechanics students and researchers.


A Literature Review of Coupled Thermal-hydrologic-mechanical-chemical Processes Pertinent to the Proposed High-level Nuclear Waste Repository at Yucca Mountain

A Literature Review of Coupled Thermal-hydrologic-mechanical-chemical Processes Pertinent to the Proposed High-level Nuclear Waste Repository at Yucca Mountain

Author:

Publisher:

Published: 1993

Total Pages: 226

ISBN-13:

DOWNLOAD EBOOK

A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.


A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

Author:

Publisher:

Published: 1999

Total Pages: 42

ISBN-13:

DOWNLOAD EBOOK

Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat released from the repository on the tuff host rock and for THC modeling studies of the repository. Many other such intrusive complexes exist at the Nevada Test Site and in other parts of the world that could provide an extensive data set for understanding and predicting the behavior of the Yucca Mountain repository, for which the Paiute Ridge complex is just one example.


Disposition of High-Level Waste and Spent Nuclear Fuel

Disposition of High-Level Waste and Spent Nuclear Fuel

Author: National Research Council

Publisher: National Academies Press

Published: 2001-07-05

Total Pages: 215

ISBN-13: 0309073170

DOWNLOAD EBOOK

Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.


Panel Report on Coupled Thermo-mechanical-hydro-chemical Processes Associated with a Nuclear Waste Repository

Panel Report on Coupled Thermo-mechanical-hydro-chemical Processes Associated with a Nuclear Waste Repository

Author:

Publisher:

Published: 1984

Total Pages: 89

ISBN-13:

DOWNLOAD EBOOK

Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100°C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.


Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

Author:

Publisher:

Published: 2010

Total Pages: 62

ISBN-13:

DOWNLOAD EBOOK

As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R & D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.