A practical primer for the student and practicing engineer already familiar with the basics of digital design, the reference develops a working grasp of the VHLD hardware description language step-by-step using easy-to-understand examples. Starting with a simple but workable design sample, increasingly more complex fundamentals of the language are introduced until all core features of VHDL are brought to light. Included in the coverage are state machines, modular design, FPGA-based memories, clock management, specialized I/O, and an introduction to techniques of simulation. The goal is to prepare the reader to design real-world FPGA solutions. All the sample code used in the book is available online. What Strunk and White did for the English language with "The Elements of Style," VHDL BY EXAMPLE does for FPGA design.
A completely updated and expanded comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits. This comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits has been completely updated and expanded for the third edition. New features include all VHDL-2008 constructs, an extensive review of digital circuits, RTL analysis, and an unequaled collection of VHDL examples and exercises. The book focuses on the use of VHDL rather than solely on the language, with an emphasis on design examples and laboratory exercises. The third edition begins with a detailed review of digital circuits (combinatorial, sequential, state machines, and FPGAs), thus providing a self-contained single reference for the teaching of digital circuit design with VHDL. In its coverage of VHDL-2008, it makes a clear distinction between VHDL for synthesis and VHDL for simulation. The text offers complete VHDL codes in examples as well as simulation results and comments. The significantly expanded examples and exercises include many not previously published, with multiple physical demonstrations meant to inspire and motivate students. The book is suitable for undergraduate and graduate students in VHDL and digital circuit design, and can be used as a professional reference for VHDL practitioners. It can also serve as a text for digital VLSI in-house or academic courses.
This book introduces a modern approach to embedded system design, presenting software design and hardware design in a unified manner. It covers trends and challenges, introduces the design and use of single-purpose processors ("hardware") and general-purpose processors ("software"), describes memories and buses, illustrates hardware/software tradeoffs using a digital camera example, and discusses advanced computation models, controls systems, chip technologies, and modern design tools. For courses found in EE, CS and other engineering departments.
A guide to applying software design principles and coding practices to VHDL to improve the readability, maintainability, and quality of VHDL code. This book addresses an often-neglected aspect of the creation of VHDL designs. A VHDL description is also source code, and VHDL designers can use the best practices of software development to write high-quality code and to organize it in a design. This book presents this unique set of skills, teaching VHDL designers of all experience levels how to apply the best design principles and coding practices from the software world to the world of hardware. The concepts introduced here will help readers write code that is easier to understand and more likely to be correct, with improved readability, maintainability, and overall quality. After a brief review of VHDL, the book presents fundamental design principles for writing code, discussing such topics as design, quality, architecture, modularity, abstraction, and hierarchy. Building on these concepts, the book then introduces and provides recommendations for each basic element of VHDL code, including statements, design units, types, data objects, and subprograms. The book covers naming data objects and functions, commenting the source code, and visually presenting the code on the screen. All recommendations are supported by detailed rationales. Finally, the book explores two uses of VHDL: synthesis and testbenches. It examines the key characteristics of code intended for synthesis (distinguishing it from code meant for simulation) and then demonstrates the design and implementation of testbenches with a series of examples that verify different kinds of models, including combinational, sequential, and FSM code. Examples from the book are also available on a companion website, enabling the reader to experiment with the complete source code.
The skills and guidance needed to master RTL hardware design This book teaches readers how to systematically design efficient, portable, and scalable Register Transfer Level (RTL) digital circuits using the VHDL hardware description language and synthesis software. Focusing on the module-level design, which is composed of functional units, routing circuit, and storage, the book illustrates the relationship between the VHDL constructs and the underlying hardware components, and shows how to develop codes that faithfully reflect the module-level design and can be synthesized into efficient gate-level implementation. Several unique features distinguish the book: * Coding style that shows a clear relationship between VHDL constructs and hardware components * Conceptual diagrams that illustrate the realization of VHDL codes * Emphasis on the code reuse * Practical examples that demonstrate and reinforce design concepts, procedures, and techniques * Two chapters on realizing sequential algorithms in hardware * Two chapters on scalable and parameterized designs and coding * One chapter covering the synchronization and interface between multiple clock domains Although the focus of the book is RTL synthesis, it also examines the synthesis task from the perspective of the overall development process. Readers learn good design practices and guidelines to ensure that an RTL design can accommodate future simulation, verification, and testing needs, and can be easily incorporated into a larger system or reused. Discussion is independent of technology and can be applied to both ASIC and FPGA devices. With a balanced presentation of fundamentals and practical examples, this is an excellent textbook for upper-level undergraduate or graduate courses in advanced digital logic. Engineers who need to make effective use of today's synthesis software and FPGA devices should also refer to this book.
This book uses a "learn by doing" approach to introduce the concepts and techniques of VHDL and FPGA to designers through a series of hands-on experiments. FPGA Prototyping by VHDL Examples provides a collection of clear, easy-to-follow templates for quick code development; a large number of practical examples to illustrate and reinforce the concepts and design techniques; realistic projects that can be implemented and tested on a Xilinx prototyping board; and a thorough exploration of the Xilinx PicoBlaze soft-core microcontroller.