Power GaN Devices

Power GaN Devices

Author: Matteo Meneghini

Publisher: Springer

Published: 2016-09-08

Total Pages: 383

ISBN-13: 3319431994

DOWNLOAD EBOOK

This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.


GaN Transistors for Efficient Power Conversion

GaN Transistors for Efficient Power Conversion

Author: Alex Lidow

Publisher: John Wiley & Sons

Published: 2019-08-12

Total Pages: 518

ISBN-13: 1119594421

DOWNLOAD EBOOK

An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.


Gallium Nitride Power Devices

Gallium Nitride Power Devices

Author: Hongyu Yu

Publisher: CRC Press

Published: 2017-07-06

Total Pages: 301

ISBN-13: 1351767607

DOWNLOAD EBOOK

GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be developed in many countries, including the United States, the European Union, Japan, and China. This book presents a comprehensive overview of GaN power device technologies, for example, material growth, property analysis, device structure design, fabrication process, reliability, failure analysis, and packaging. It provides useful information to both students and researchers in academic and related industries working on GaN power devices. GaN wafer growth technology is from Enkris Semiconductor, currently one of the leading players in commercial GaN wafers. Chapters 3 and 7, on the GaN transistor fabrication process and GaN vertical power devices, are edited by Dr. Zhihong Liu, who has been working on GaN devices for more than ten years. Chapters 2 and 5, on the characteristics of polarization effects and the original demonstration of AlGaN/GaN heterojunction field-effect transistors, are written by researchers from Southwest Jiaotong University. Chapters 6, 8, and 9, on surface passivation, reliability, and package technologies, are edited by a group of researchers from the Southern University of Science and Technology of China.


Iii-nitride Semiconductor Materials

Iii-nitride Semiconductor Materials

Author: Zhe Chuan Feng

Publisher: World Scientific

Published: 2006-03-20

Total Pages: 442

ISBN-13: 1908979941

DOWNLOAD EBOOK

III-Nitride semiconductor materials — (Al, In, Ga)N — are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment.The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals./a


Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Author: Gaudenzio Meneghesso

Publisher: Springer

Published: 2018-05-12

Total Pages: 242

ISBN-13: 331977994X

DOWNLOAD EBOOK

This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.


Wide Bandgap Based Devices

Wide Bandgap Based Devices

Author: Farid Medjdoub

Publisher: MDPI

Published: 2021-05-26

Total Pages: 242

ISBN-13: 3036505660

DOWNLOAD EBOOK

Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices


GaN Power Devices and Applications

GaN Power Devices and Applications

Author: Alex Lidow

Publisher:

Published: 2021-10

Total Pages:

ISBN-13: 9780996649223

DOWNLOAD EBOOK

GaN Power Devices and Applications, provides an update on gallium nitride (GaN) technology and applications by leading experts. It includes detailed descriptions of the latest examples of GaN's usage in power supplies, lidar systems, motor drives, and space applications.


Aspencore Guide to Gallium Nitride

Aspencore Guide to Gallium Nitride

Author: Maurizio Di Paolo Emilio

Publisher:

Published: 2021-01-20

Total Pages: 160

ISBN-13: 9781735813127

DOWNLOAD EBOOK

As silicon reaches its theoretical performance limits for power electronics, industry is shifting toward wide-bandgap materials like Gallium Nitride (GaN), whose properties provide clear benefits in power converters for consumer and industrial electronics. In over 150 pages covering the technology, its applications, markets and future potential, this book delves into GaN technology and its importance for power electronics professionals engaged with its implementation in power devices. The properties of GaN, such as low leakage current, significantly reduced power losses, higher power density and the ability to tolerate higher operating temperatures, all from a device smaller than its silicon-only equivalent, provide design advantages allowing previously unimaginable application performance. As an alternative to silicon, GaN can provide clear benefits in power converters for consumer and industrial electronics; chargers for wireless devices, including 5G; driver circuits for motor control; and power switches in automotive and space applications.The book also explores why GaN-based devices hold the key to addressing the energy efficiency agenda, a key strategic initiative in increasingly power-reliant industries such as data centers, electric vehicles, and renewable energy systems. Highly efficient residential and commercial energy storage systems using GaN technology will enable distribution, local storage, and on-demand access to renewable energy. Continued progress in the battery market will lead to declining battery costs and the development of smaller batteries that pair with GaN technology-based converters and inverters. Thermal management is critical in power electronics, and high efficiency in higher-power systems is always a focus. With GaN, a 50% reduction in losses can be achieved, reducing the costs and area required to manage heat. The book delves into GaN's electrical characteristics and how these can be exploited in power devices. There are also chapters that cross into the key applications for GaN devices for several markets such as space, automotive, audio, motor control and data centers. Each chapter provides a comprehensive overview of the subject matter for anyone who wants to stay on the leading edge of power electronics.


Gallium Oxide

Gallium Oxide

Author: Masataka Higashiwaki

Publisher: Springer Nature

Published: 2020-04-23

Total Pages: 768

ISBN-13: 3030371530

DOWNLOAD EBOOK

This book provides comprehensive coverage of the new wide-bandgap semiconductor gallium oxide (Ga2O3). Ga2O3 has been attracting much attention due to its excellent materials properties. It features an extremely large bandgap of greater than 4.5 eV and availability of large-size, high-quality native substrates produced from melt-grown bulk single crystals. Ga2O3 is thus a rising star among ultra-wide-bandgap semiconductors and represents a key emerging research field for the worldwide semiconductor community. Expert chapters cover physical properties, synthesis, and state-of-the-art applications, including materials properties, growth techniques of melt-grown bulk single crystals and epitaxial thin films, and many types of devices. The book is an essential resource for academic and industry readers who have an interest in, or plan to start, a new R&D project related to Ga2O3.