This is the first book to provide, in a single source, the detailed interdisciplinary information needed to understand, design and implement advanced Intelligent Transportation Systems (ITS, formerly IVHS). It presents state-of-the-art principles and practices that you can apply to a wide range of vehicle location and navigation systems -- placing special emphasis on the vehicle side of the system -- and synthesizes information scattered among many different engineering fields.
The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.
As global navigation satellite systems (GNSS) such as GPS have grown more pervasive, the use of GNSS to automatically control ground vehicles has drawn increasing interest. This cutting-edge resource offers you a thorough understanding of this emerging application area of GNSS. Written by highly-regarded authorities in the field, this unique reference covers a wide range of key topics, including ground vehicles models, psuedolites, highway vehicle control, unmanned ground vehicles, farm tractors, and construction equipment. The book is supported with over 150 illustrations and more than 180 equations.
This newly revised and greatly expanded edition of the popular Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching . It provides both an introduction to navigation systems and an in-depth treatment of INS/GNSS and multisensor integration. The second edition offers a wealth of added and updated material, including a brand new chapter on the principles of radio positioning and a chapter devoted to important applications in the field. Other updates include expanded treatments of map matching, image-based navigation, attitude determination, acoustic positioning, pedestrian navigation, advanced GNSS techniques, and several terrestrial and short-range radio positioning technologies .. The book shows you how satellite, inertial, and other navigation technologies work, and focuses on processing chains and error sources. In addition, you get a clear introduction to coordinate frames, multi-frame kinematics, Earth models, gravity, Kalman filtering, and nonlinear filtering. Providing solutions to common integration problems, the book describes and compares different integration architectures, and explains how to model different error sources. You get a broad and penetrating overview of current technology and are brought up to speed with the latest developments in the field, including context-dependent and cooperative positioning.
Compiled by leading authorities, Aerospace Navigation Systems is a compendium of chapters that present modern aircraft and spacecraft navigation methods based on up-to-date inertial, satellite, map matching and other guidance techniques. Ranging from the practical to the theoretical, this book covers navigational applications over a wide range of aerospace vehicles including aircraft, spacecraft and drones, both remotely controlled and operating as autonomous vehicles. It provides a comprehensive background of fundamental theory, the utilisation of newly-developed techniques, incorporates the most complex and advanced types of technical innovation currently available and presents a vision for future developments. Satellite Navigation Systems (SNS), long range navigation systems, short range navigation systems and navigational displays are introduced, and many other detailed topics include Radio Navigation Systems (RNS), Inertial Navigation Systems (INS), Homing Systems, Map Matching and other correlated-extremalsystems, and both optimal and sub-optimal filtering in integrated navigation systems.
Design Cutting-Edge Aided Navigation Systems for Advanced Commercial & Military Applications Aided Navigation is a design-oriented textbook and guide to building aided navigation systems for smart cars, precision farming vehicles, smart weapons, unmanned aircraft, mobile robots, and other advanced applications. The navigation guide contains two parts explaining the essential theory, concepts, and tools, as well as the methodology in aided navigation case studies with sufficient detail to serve as the basis for application-oriented analysis and design. Filled with detailed illustrations and examples, this expert design tool takes you step-by-step through coordinate systems, deterministic and stochastic modeling, optimal estimation, and navigation system design. Authoritative and comprehensive, Aided Navigation features: End-of-chapter exercises throughout Part I In-depth case studies of aided navigation systems Numerous Matlab-based examples Appendices define notation, review linear algebra, and discuss GPS receiver interfacing Source code and sensor data to support examples is available through the publisher-supported website Inside this Complete Guide to Designing Aided Navigation Systems • Aided Navigation Theory: Introduction to Aided Navigation • Coordinate Systems • Deterministic Modeling • Stochastic Modeling • Optimal Estimation • Navigation System Design • Navigation Case Studies: Global Positioning System (GPS) • GPS-Aided Encoder • Attitude and Heading Reference System • GPS-Aided Inertial Navigation System (INS) • Acoustic Ranging and Doppler-Aided INS
Compiled by leading authorities, Aerospace Navigation Systems is a compendium of chapters that present modern aircraft and spacecraft navigation methods based on up-to-date inertial, satellite, map matching and other guidance techniques. Ranging from the practical to the theoretical, this book covers navigational applications over a wide range of aerospace vehicles including aircraft, spacecraft and drones, both remotely controlled and operating as autonomous vehicles. It provides a comprehensive background of fundamental theory, the utilisation of newly-developed techniques, incorporates the most complex and advanced types of technical innovation currently available and presents a vision for future developments. Satellite Navigation Systems (SNS), long range navigation systems, short range navigation systems and navigational displays are introduced, and many other detailed topics include Radio Navigation Systems (RNS), Inertial Navigation Systems (INS), Homing Systems, Map Matching and other correlated-extremalsystems, and both optimal and sub-optimal filtering in integrated navigation systems.
Maritime navigation has rapidly developed since the publication of the last edition of the title with methods of global position fixing for shipping becoming standardized. As in the previous two editions, this edition will provide a sound basis for the understanding of modern navigation systems and brings the student or professional up-to-date with the latest developments in technology and the growing standardization of maritime navigation techniques. Developed with close scrutiny from the US Merchant Marine Academy and the major maritime navigation centres in the UK, out-dated techniques have been replaced by an expanded section on the now standard Navstar GPS systems and the Integrated Nav. In addition, a new chapter on the application of electronic charts will also be included, as well as problems at the end of each chapter with worked solutions.
When Dan set out to drive his Jeep from the Northern tip of Alaska to Tierra del Fuego on the Southern tip of South America, he had no idea how much the adventure would change his life. Over the course of two years, Dan's expedition spanned forty thousand miles through sixteen countries. Now he will never be the same. After years of saving, dreaming and planning, Dan wanted to find out if an ordinary guy can achieve the extraordinary. With no sponsorship, a modest savings account and a willingness to learn Spanish, Dan threw himself in. Going solo, with no GPS and sleeping in a ground tent, Dan wanted to experience everything the Americas have to offer. From poking lava with a stick and hiking among world-famous mountains to corrupt military and camping with Ecuadorian locals - every day provided something new. With his eyes and ears open to the world around him, Dan met many interesting and thought-provoking characters. With their guidance and prodding, and by using their unique perspective, Dan was able to learn many valuable life lessons. Running to the beat of a different drum, Latin America was the perfect classroom for Dan to view our modern work-a-day world through an entirely new lens.