Twelve Lectures on Structural Dynamics

Twelve Lectures on Structural Dynamics

Author: André Preumont

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 313

ISBN-13: 9400763832

DOWNLOAD EBOOK

This text addresses the modeling of vibrating systems with the perspective of finding the model of minimum complexity which accounts for the physics of the phenomena at play. The first half of the book (Ch.1-6) deals with the dynamics of discrete and continuous mechanical systems; the classical approach emphasizes the use of Lagrange's equations. The second half of the book (Ch.7-12) deals with more advanced topics, rarely encountered in the existing literature: seismic excitation, random vibration (including fatigue), rotor dynamics, vibration isolation and dynamic vibration absorbers; the final chapter is an introduction to active control of vibrations. The first part of this text may be used as a one semester course for 3rd year students in Mechanical, Aerospace or Civil Engineering. The second part of the text is intended for graduate classes. A set of problems is provided at the end of every chapter. The author has a 35 years experience in various aspects of Structural dynamics, both in industry (nuclear and aerospace) and in academia; he was one of the pioneers in the field of active structures. He is the author of several books on random vibration, active structures and structural control.


Mechanical Vibrations

Mechanical Vibrations

Author: Michel Geradin

Publisher: John Wiley & Sons

Published: 2015-02-16

Total Pages: 616

ISBN-13: 1118900200

DOWNLOAD EBOOK

Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition is a comprehensively updated new edition of the popular textbook. It presents the theory of vibrations in the context of structural analysis and covers applications in mechanical and aerospace engineering. Key features include: A systematic approach to dynamic reduction and substructuring, based on duality between mechanical and admittance concepts An introduction to experimental modal analysis and identification methods An improved, more physical presentation of wave propagation phenomena A comprehensive presentation of current practice for solving large eigenproblems, focusing on the efficient linear solution of large, sparse and possibly singular systems A deeply revised description of time integration schemes, providing framework for the rigorous accuracy/stability analysis of now widely used algorithms such as HHT and Generalized-α Solved exercises and end of chapter homework problems A companion website hosting supplementary material


Vibration Control of Active Structures

Vibration Control of Active Structures

Author: André Preumont

Publisher: Springer

Published: 2018-02-10

Total Pages: 529

ISBN-13: 3319722964

DOWNLOAD EBOOK

This textbook is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures; the emphasis is placed on basic issues and simple control strategies that work. Now in its fourth edition, more chapters have been added, and comments and feedback from readers have been taken into account, while at the same time the unique premise of bridging the gap between structure and control has remained. Many examples, covering a broad field of applications from bridges to satellites and telescopes, and problems bring the subject to life and take the audience from theory to practice. The book has 19 chapters dealing with some concepts in structural dynamics; electromagnetic and piezoelectric transducers; piezoelectric beam, plate and truss; passive damping with piezoelectric transducers; collocated versus non-collocated control; active damping with collocated systems; vibration isolation; state space approach; analysis and synthesis in the frequency domain; optimal control; controllability and observability; stability; applications; tendon control of cable structures; active control of deformable mirrors for Adaptive Optics and large earth-based and space telescopes; and semi-active control. The book concludes with an exhaustive bibliography and index. This book is intended for structural engineers who want to acquire some background in vibration control, and for control engineers who are dealing with flexible structures. It can be used as a textbook for a graduate course on vibration control or active structures. A solutions manual is available through the publisher to teachers using this book as a textbook.


Mathematical Models of Beams and Cables

Mathematical Models of Beams and Cables

Author: Angelo Luongo

Publisher: John Wiley & Sons

Published: 2013-12-02

Total Pages: 266

ISBN-13: 1118577639

DOWNLOAD EBOOK

Nonlinear models of elastic and visco-elastic onedimensional continuous structures (beams and cables) are formulated by the authors of this title. Several models of increasing complexity are presented: straight/curved, planar/non-planar, extensible/inextensible, shearable/unshearable, warpingunsensitive/ sensitive, prestressed/unprestressed beams, both in statics and dynamics. Typical engineering problems are solved via perturbation and/or numerical approaches, such as bifurcation and stability under potential and/or tangential loads, parametric excitation, nonlinear dynamics and aeroelasticity. Contents 1. A One-Dimensional Beam Metamodel. 2. Straight Beams. 3. Curved Beams. 4. Internally Constrained Beams. 5. Flexible Cables. 6. Stiff Cables. 7. Locally-Deformable Thin-Walled Beams. 8. Distortion-Constrained Thin-Walled Beams.


Advances in Dynamics of Vehicles on Roads and Tracks

Advances in Dynamics of Vehicles on Roads and Tracks

Author: Matthijs Klomp

Publisher: Springer Nature

Published: 2020-02-14

Total Pages: 1917

ISBN-13: 3030380777

DOWNLOAD EBOOK

This book gathers together papers presented at the 26th IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks, held on August 12 – 16, 2019, at the Lindholmen Conference Centre in Gothenburg, Sweden. It covers cutting-edge issues related to vehicle systems, including vehicle design, condition monitoring, wheel and rail contact, automated driving systems, suspension and ride analysis, and many more topics. Written by researchers and practitioners, the book offers a timely reference guide to the field of vehicle systems dynamics, and a source of inspiration for future research and collaborations.


Active and Passive Vibration Control of Structures

Active and Passive Vibration Control of Structures

Author: Peter Hagedorn

Publisher: Springer

Published: 2014-10-20

Total Pages: 316

ISBN-13: 3709118212

DOWNLOAD EBOOK

Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory. Also links between the different applications in structural control are shown.


Offshore Mechanics

Offshore Mechanics

Author: Madjid Karimirad

Publisher: John Wiley & Sons

Published: 2018-01-30

Total Pages: 307

ISBN-13: 1119216648

DOWNLOAD EBOOK

Covers theoretical concepts in offshore mechanics with consideration to new applications, including offshore wind farms, ocean energy devices, aquaculture, floating bridges, and submerged tunnels This comprehensive book covers important aspects of the required analysis and design of offshore structures and systems and the fundamental background material for offshore engineering. Whereas most of the books currently available in the field use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications, including recent fixed-bottom and floating offshore platforms, ocean energy structures and systems such as wind turbines, wave energy converters, tidal turbines and hybrid marine platforms. Offshore Mechanics covers traditional and more recent methodologies used in offshore structure modelling (including SPH and hydroelasticity models). It also examines numerical techniques, including computational fluid dynamics and finite element method. Additionally, the book features easy-to-understand exercises and examples. Provides a comprehensive treatment for the case of recent applications in offshore mechanics for researchers and engineers Presents the subject of computational fluid dynamics (CFD) and finite element methods (FEM) along with the high fidelity numerical analysis of recent applications in offshore mechanics Offers insight into the philosophy and power of numerical simulations and an understanding of the mathematical nature of the fluid and structural dynamics with focus on offshore mechanic applications Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is an important book for graduate and senior undergraduate students in offshore engineering and for offshore engineers and researchers in the offshore industry.


Miles' Equation in Random Vibrations

Miles' Equation in Random Vibrations

Author: Jaap Wijker

Publisher: Springer

Published: 2018-01-25

Total Pages: 229

ISBN-13: 3319731149

DOWNLOAD EBOOK

This book discusses the theory, applicability and numerous examples of Miles’ equation in detail. Random vibration is one of the main design drivers in the context of the design, development and verification of spacecraft structures, instruments, equipment, etc, and Miles’ equation provides a valuable tool for solving random vibration problems. It allows mechanical engineers to make rapid preliminary random response predictions when the (complex) structure is exposed to mechanical and acoustical loads. The book includes appendices to support the theory and applications in the main chapters.


Advanced Mechanical Vibrations

Advanced Mechanical Vibrations

Author: Paolo Luciano Gatti

Publisher: CRC Press

Published: 2020-12-21

Total Pages: 235

ISBN-13: 1351008587

DOWNLOAD EBOOK

Advanced Mechanical Vibrations: Physics, Mathematics and Applications provides a concise and solid exposition of the fundamental concepts and ideas that pervade many specialised disciplines where linear engineering vibrations are involved. Covering the main key aspects of the subject – from the formulation of the equations of motion by means of analytical techniques to the response of discrete and continuous systems subjected to deterministic and random excitation – the text is ideal for intermediate to advanced students of engineering, physics and mathematics. In addition, professionals working in – or simply interested in – the field of mechanical and structural vibrations will find the content helpful, with an approach to the subject matter that places emphasis on the strict, inextricable and sometimes subtle interrelations between physics and mathematics, on the one hand, and theory and applications, on the other hand. It includes a number of worked examples in each chapter, two detailed mathematical appendixes and an extensive list of references.