Vorticity and Vortex Dynamics

Vorticity and Vortex Dynamics

Author: Jie-Zhi Wu

Publisher: Springer Science & Business Media

Published: 2007-04-20

Total Pages: 776

ISBN-13: 3540290281

DOWNLOAD EBOOK

This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.


Quantized Vortex Dynamics and Superfluid Turbulence

Quantized Vortex Dynamics and Superfluid Turbulence

Author: C.F. Barenghi

Publisher: Springer

Published: 2008-01-11

Total Pages: 459

ISBN-13: 3540455426

DOWNLOAD EBOOK

This book springs from the programme Quantized Vortex Dynamics and Sup- ?uid Turbulence held at the Isaac Newton Institute for Mathematical Sciences (University of Cambridge) in August 2000. What motivated the programme was the recognition that two recent developments have moved the study of qu- tized vorticity, traditionally carried out within the low-temperature physics and condensed-matter physics communities, into a new era. The ?rst development is the increasing contact with classical ?uid dynamics and its ideas and methods. For example, some current experiments with - lium II now deal with very classical issues, such as the measurement of velocity spectra and turbulence decay rates. The evidence from these experiments and many others is that super?uid turbulence and classical turbulence share many features. The challenge is now to explain these similarities and explore the time scales and length scales over which they hold true. The observed classical aspects have also attracted attention to the role played by the ?ow of the normal ?uid, which was somewhat neglected in the past because of the lack of direct ?ow visualization. Increased computing power is also making it possible to study the coupled motion of super?uid vortices and normal ?uids. Another contact with classical physics arises through the interest in the study of super?uid vortex - connections. Reconnections have been studied for some time in the contexts of classical ?uid dynamics and magneto-hydrodynamics (MHD), and it is useful to learn from the experience acquired in other ?elds.


Vortex Dynamics

Vortex Dynamics

Author: P. G. Saffman

Publisher: Cambridge University Press

Published: 1995-02-24

Total Pages: 332

ISBN-13: 9780521477390

DOWNLOAD EBOOK

Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. However, this volume focuses on those aspects of fluid motion that are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.


Liutex and Its Applications in Turbulence Research

Liutex and Its Applications in Turbulence Research

Author: Chaoqun Liu

Publisher: Academic Press

Published: 2020-10-29

Total Pages: 458

ISBN-13: 0128190248

DOWNLOAD EBOOK

Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. Provides an accurate mathematical definition of vortices Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence Explains the term “Rortex as a mathematically defined rigid rotation of fluids or vortex Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence


Turbulence and Coherent Structures

Turbulence and Coherent Structures

Author: O. Métais

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 612

ISBN-13: 9401579040

DOWNLOAD EBOOK

In the last 25 years, one of the most striking advances in Fluid Mecha nics was certainly the discovery of coherent structures in turbulence: lab oratory experiments and numerical simulations have shown that most turbulent flows exhibit both spatially-organized large-scale structures and disorganized motions, generally at smaller scales. The develop ment of new measurement and visualization techniques have allowed a more precise characterization and investigation of these structures in the laboratory. Thanks to the unprecedented increase of computer power and to the development of efficient interactive three-dimensional colour graphics, computational fluid dynamicists can explore the still myste rious world of turbulence. However, many problems remain unsolved concerning the origin of these structures, their dynamics, and their in teraction with the disorganized motions. In this book will be found the latest results of experimentalists, theoreticians and numerical modellers interested in these topics. These coherent structures may appear on airplane wings or slender bodies, mixing layers, jets, wakes or boundary-layers. In free-shear flows and in boundary layers, the results presented here highlight the intense three-dimensional character of the vortices. The two-dimensional large scale eddies are very sensitive to three-dimensional perturbations, whose amplification leads to the formation of three-dimensional coherent vorti cal structures, such as streamwise, hairpin or horseshoe vortex filaments. This book focuses on modern aspects of turbulence study. Relations between turbulence theory and optimal control theory in mathematics are discussed. This may have important applications with regard to, e. g. , numerical weather forecasting.


Turbulent Shear Flows I

Turbulent Shear Flows I

Author: F. Durst

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 415

ISBN-13: 3642463959

DOWNLOAD EBOOK

The present book contains papers that have been selected from contributions to the First International Symposium on Turbulent Shear Flows which was held from the 18th to 20th April 1977 at The Pennsylvania State University, University Park, Pennsylvania, USA. Attend ees from close to 20 countries presented over 100 contributions at this meeting in which many aspects of the current activities in turbulence research were covered. Five topics received particular attention at the Symposium: Free Flows Wall Flows Recirculating Flows Developments in Reynolds Stress Closures New Directions in Modeling This is also reflected in the five chapters of this book with contributions from research workers from different countries. Each chapter covers the most valuable contributions of the conference to the particular chapter topic. Of course, there were many additional good con tributions to each subject at the meeting but the limitation imposed on the length of this volume required that a selection be made. The realization of the First International Symposium on Turbulent Shear Flows was p- sible by the general support of: U. S. Army Research Office U. S. Navy Research Office Continuing Education Center of The Pennsylvania State University The conference organization was carried out by the organizing committee consisting of: F. Durst, Universitat Karlsruhe, Karlsruhe, Fed. Rep. of Germany V. W. Goldschmidt, Purdue University, West Lafayette, Ind. , USA B. E. Launder, University of California, Davis, Calif. , USA F. W. Schmidt, Pennsylvania State University, University Park, Penna.


Theoretical Approaches to Turbulence

Theoretical Approaches to Turbulence

Author: D.L. Dwoyer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 377

ISBN-13: 1461210925

DOWNLOAD EBOOK

Turbulence is the lIDst natural nDde of fluid lIDtion, and has been the subject of scientific study for all Dst a century. During this period, various ideas and techniques have evolved to nDdel turbulence. Following Saffman, these theoretical approaches can be broadly divided into four overlapping categories -- (1) analytical lIDdelling, (2) physical lIDdelling, (3) phenomenologicalllDdelling, and (4) nurerical lIDdelling. With the purpose of stmtnarizing our =ent understanding of these theoretical approaches to turbulence, recognized leaders (fluid dynamicists, mathematicians and physicists) in the field were invited to participate in a formal workshop during October 10-12, 1984, sponsored by The Institute for CooIputer Applications in Science and Engineering and NASA Langley Research Center. Kraiciman, McCcxnb, Pouquet and Spiegel represented the category of analytical nDdelling, while Landahl and Saffman represented physical lIDdelling. The contributions of Latmder and Spalding were in the category of phenanenological lIDdelling, and those of Ferziger and Reynolds in the area of nurericalllDdelling. Aref, Cholet, Lumley, Moin, Pope and Temam served on the panel discussions. With the care and cooperation of the participants, the workshop achieved its purpose, and we believe that its proceedings published in this vol\. llre has lasting scientific value. The tone of the workshop was set by two introductory talks by Bushnell and ChaImm. Buslmell presented the engineering viewpoint while Chapman reviewed from a historical perspective developments in the study of turbulence. The remaining talks dealt with specific aspects of the theoretical approaches to fluid turbulence.


Vortex Dynamics and Vortex Methods

Vortex Dynamics and Vortex Methods

Author: Christopher Radcliff Anderson

Publisher: American Mathematical Soc.

Published: 1991-12-23

Total Pages: 776

ISBN-13: 9780821896969

DOWNLOAD EBOOK

Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.