Thermodynamic Cycles

Thermodynamic Cycles

Author: Chih Wu

Publisher: CRC Press

Published: 2003-10-21

Total Pages: 458

ISBN-13: 9780203913079

DOWNLOAD EBOOK

This reference illustrates the efficacy of CyclePad software for enhanced simulation of thermodynamic devices and cycles. It improves thermodynamic studies by reducing calculation time, ensuring design accuracy, and allowing for case-specific analyses. Offering a wide-range of pedagogical aids, chapter summaries, review problems, and worked example


Thermodynamics and Heat Powered Cycles

Thermodynamics and Heat Powered Cycles

Author: Chih Wu

Publisher: Nova Publishers

Published: 2007

Total Pages: 684

ISBN-13: 9781600210341

DOWNLOAD EBOOK

Due to the rapid advances in computer technology, intelligent computer software and multimedia have become essential parts of engineering education. Software integration with various media such as graphics, sound, video and animation is providing efficient tools for teaching and learning. A modern textbook should contain both the basic theory and principles, along with an updated pedagogy. Often traditional engineering thermodynamics courses are devoted only to analysis, with the expectation that students will be introduced later to relevant design considerations and concepts. Cycle analysis is logically and traditionally the focus of applied thermodynamics. Type and quantity are constrained, however, by the computational efforts required. The ability for students to approach realistic complexity is limited. Even analyses based upon grossly simplified cycle models can be computationally taxing, with limited educational benefits. Computerised look-up tables reduce computational labour somewhat, but modelling cycles with many interactive loops can lie well outside the limits of student and faculty time budgets. The need for more design content in thermodynamics books is well documented by industry and educational oversight bodies such as ABET (Accreditation Board for Engineering and Technology). Today, thermodynamic systems and cycles are fertile ground for engineering design. For example, niches exist for innovative power generation systems due to deregulation, co-generation, unstable fuel costs and concern for global warming. Professor Kenneth Forbus of the computer science and education department at Northwestern University has developed ideal intelligent computer software for thermodynamic students called CyclePad. CyclePad is a cognitive engineering software. It creates a virtual laboratory where students can efficiently learn the concepts of thermodynamics, and allows systems to be analyzed and designed in a simulated, interactive computer aided design environment. The software guides students through a design process and is able to provide explanations for results and to coach students in improving designs. Like a professor or senior engineer, CyclePad knows the laws of thermodynamics and how to apply them. If the user makes an error in design, the program is able to remind the user of essential principles or design steps that may have been overlooked. If more help is needed, the program can provide a documented, case study that recounts how engineers have resolved similar problems in real life situations. CyclePad eliminates the tedium of learning to apply thermodynamics, and relates what the user sees on the computer screen to the design of actual systems. This integrated, engineering textbook is the result of fourteen semesters of CyclePad usage and evaluation of a course designed to exploit the power of the software, and to chart a path that truly integrates the computer with education. The primary aim is to give students a thorough grounding in both the theory and practice of thermodynamics. The coverage is compact without sacrificing necessary theoretical rigor. Emphasis throughout is on the applications of the theory to actual processes and power cycles. This book will help educators in their effort to enhance education through the effective use of intelligent computer software and computer assisted course work.


An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines

An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines

Author: Jerald A. Caton

Publisher: John Wiley & Sons

Published: 2015-12-14

Total Pages: 381

ISBN-13: 1119037565

DOWNLOAD EBOOK

This book provides an introduction to basic thermodynamic engine cycle simulations, and provides a substantial set of results. Key features includes comprehensive and detailed documentation of the mathematical foundations and solutions required for thermodynamic engine cycle simulations. The book includes a thorough presentation of results based on the second law of thermodynamics as well as results for advanced, high efficiency engines. Case studies that illustrate the use of engine cycle simulations are also provided.


Thermodynamic Cycles

Thermodynamic Cycles

Author: D James Benton

Publisher:

Published: 2019-05-30

Total Pages: 108

ISBN-13: 9781070934372

DOWNLOAD EBOOK

Efficient design, operation, and maintenance of power and process systems require accurate and effective thermodynamic cycle modeling tools. Many such tools exist; however, the logic and programming of these tools vary considerably, making them more or less practical for differing applications. This book is a compilation of what to do and what to avoid, including the details of how to best accomplish the desired end. All of the data and source code are available free online.


Closed Power Cycles

Closed Power Cycles

Author: Costante Mario Invernizzi

Publisher: Springer Science & Business Media

Published: 2013-06-03

Total Pages: 280

ISBN-13: 1447151402

DOWNLOAD EBOOK

With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines operating in accordance with closed cycles is provided to develop ideas and discussions strictly founded on the basic thermodynamic facts that control the closed cycles operation and design. Closed Power Cycles: Thermodynamic Fundamentals and Applications also contains numerous examples which have been carried out with the help of the Aspen PlusĀ®R program. Including chapters on binary cycles, the organic Rankine cycle and real closed gas cycles, Closed Power Cycles: Thermodynamic Fundamentals and Applications acts a solid introduction and reference for post-graduate students and researchers working in applied thermodynamics and energy conversion with thermodynamic engines.


Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2015-09-28

Total Pages: 812

ISBN-13: 0309373913

DOWNLOAD EBOOK

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.


28th International Symposium on Shock Waves

28th International Symposium on Shock Waves

Author: Konstantinos Kontis

Publisher: Springer Science & Business Media

Published: 2012-03-22

Total Pages: 1122

ISBN-13: 3642256856

DOWNLOAD EBOOK

The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.


Physics of Cryogenics

Physics of Cryogenics

Author: Bahman Zohuri

Publisher: Elsevier

Published: 2017-11-17

Total Pages: 728

ISBN-13: 012814520X

DOWNLOAD EBOOK

Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics. - Defines the fundamentals of thermodynamics that are associated with cryogenic processes - Provides an overview of the history of the development of cryogenic technology - Includes new, low temperature tables written by the author - Deals with the application of cryogenics to preserve objects at very low temperature - Explains how cryogenic phenomena work for human cell and human body preservations and new medical approaches


Advanced Thermodynamics for Engineers

Advanced Thermodynamics for Engineers

Author: D. Winterbone

Publisher: Butterworth-Heinemann

Published: 1996-11-01

Total Pages: 399

ISBN-13: 0080523366

DOWNLOAD EBOOK

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.


Technical Thermodynamics for Engineers

Technical Thermodynamics for Engineers

Author: Achim Schmidt

Publisher: Springer Nature

Published: 2022-05-05

Total Pages: 987

ISBN-13: 3030971503

DOWNLOAD EBOOK

The book covers the classical areas of technical thermodynamics: The first part deals with the basic equations for energy conversion and idealized fluids. The second part deals with real fluids, which can be subject to a phase change, for example. Furthermore, thermodynamic mixtures of fluids are considered, e.g., humid air and gas mixtures. In the last part of the book, combustion processes and chemical reactions are presented and thermodynamically balanced. In each chapter, there are examples and exercises to deepen the theoretical knowledge. Compared to the first edition, the topic of thermodynamic state diagrams has been greatly revised. State diagrams of relevant refrigerants have been added as well as a formulary. The section on chemically reacting systems has been expanded and thoroughly revised. In the basic chapters, tasks and examples have been added to consolidate the understanding of the subject. The book is aimed at students of mechanical engineering and professional engineers.