The Local Langlands Conjecture for GL(2)

The Local Langlands Conjecture for GL(2)

Author: Colin J. Bushnell

Publisher: Springer Science & Business Media

Published: 2006-08-29

Total Pages: 352

ISBN-13: 354031511X

DOWNLOAD EBOOK

The Local Langlands Conjecture for GL(2) contributes an unprecedented text to the so-called Langlands theory. It is an ambitious research program of already 40 years and gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields.


An Introduction to the Langlands Program

An Introduction to the Langlands Program

Author: Joseph Bernstein

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 283

ISBN-13: 0817682260

DOWNLOAD EBOOK

This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers.


Langlands Correspondence for Loop Groups

Langlands Correspondence for Loop Groups

Author: Edward Frenkel

Publisher: Cambridge University Press

Published: 2007-06-28

Total Pages: 5

ISBN-13: 0521854431

DOWNLOAD EBOOK

The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.


Towards a Modulo $p$ Langlands Correspondence for GL$_2$

Towards a Modulo $p$ Langlands Correspondence for GL$_2$

Author: Christophe Breuil

Publisher: American Mathematical Soc.

Published: 2012-02-22

Total Pages: 127

ISBN-13: 0821852272

DOWNLOAD EBOOK

The authors construct new families of smooth admissible $\overline{\mathbb{F}}_p$-representations of $\mathrm{GL}_2(F)$, where $F$ is a finite extension of $\mathbb{Q}_p$. When $F$ is unramified, these representations have the $\mathrm{GL}_2({\mathcal O}_F)$-socle predicted by the recent generalizations of Serre's modularity conjecture. The authors' motivation is a hypothetical mod $p$ Langlands correspondence.


Representation Theory and Number Theory in Connection with the Local Langlands Conjecture

Representation Theory and Number Theory in Connection with the Local Langlands Conjecture

Author: Jürgen Ritter

Publisher: American Mathematical Soc.

Published: 1989

Total Pages: 282

ISBN-13: 0821850938

DOWNLOAD EBOOK

The Langlands Program summarizes those parts of mathematical research belonging to the representation theory of reductive groups and to class field theory. These two topics are connected by the vision that, roughly speaking, the irreducible representations of the general linear group may well serve as parameters for the description of all number fields. In the local case, the base field is a given $p$-adic field $K$ and the extension theory of $K$ is seen as determined by the irreducible representations of the absolute Galois group $G_K$ of $K$. Great progress has been made in establishing correspondence between the supercuspidal representations of $GL(n,K)$ and those irreducible representations of $G_K$ whose degrees divide $n$. Despite these advances, no book or paper has presented the different methods used or even collected known results. This volume contains the proceedings of the conference ``Representation Theory and Number Theory in Connection with the Local Langlands Conjecture,'' held in December 1985 at the University of Augsburg. The program of the conference was divided into two parts: (i) the representation theory of local division algebras and local Galois groups, and the Langlands conjecture in the tame case; and (ii) new results, such as the case $n=p$, the matching theorem, principal orders, tame Deligne representations, classification of representations of $GL(n)$, and the numerical Langlands conjecture. The collection of papers in this volume provides an excellent account of the current state of the local Langlands Program.


Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt

Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt

Author: George E Andrews

Publisher: World Scientific

Published: 2024-08-19

Total Pages: 704

ISBN-13: 9811277389

DOWNLOAD EBOOK

This volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.


Mathematics Into the Twenty-first Century

Mathematics Into the Twenty-first Century

Author: American Mathematical Society

Publisher: American Mathematical Soc.

Published: 1992

Total Pages: 514

ISBN-13: 9780821801673

DOWNLOAD EBOOK

In the summer of 1988 in Providence, the AMS celebrated its centennial with a wide range of mathematical activities. Among those was a symposium, Mathematics into the Twenty-first Century, which brought together a number of the top research mathematicians who will likely have a significant impact on the mathematics of this century. This book contains the lectures presented by 16 of the 18 individuals who spoke during the symposium. Written by some of the major international figures in mathematical research, this group of articles covers a panorama of the vital areas of mathematics at the turn of the 21st century and gives the general mathematical reader a broad perspective on some of the major trends in research.