The Enterprise Data Catalog

The Enterprise Data Catalog

Author: Ole Olesen-Bagneux

Publisher: "O'Reilly Media, Inc."

Published: 2023-02-15

Total Pages: 222

ISBN-13: 1492098671

DOWNLOAD EBOOK

Combing the web is simple, but how do you search for data at work? It's difficult and time-consuming, and can sometimes seem impossible. This book introduces a practical solution: the data catalog. Data analysts, data scientists, and data engineers will learn how to create true data discovery in their organizations, making the catalog a key enabler for data-driven innovation and data governance. Author Ole Olesen-Bagneux explains the benefits of implementing a data catalog. You'll learn how to organize data for your catalog, search for what you need, and manage data within the catalog. Written from a data management perspective and from a library and information science perspective, this book helps you: Learn what a data catalog is and how it can help your organization Organize data and its sources into domains and describe them with metadata Search data using very simple-to-complex search techniques and learn to browse in domains, data lineage, and graphs Manage the data in your company via a data catalog Implement a data catalog in a way that exactly matches the strategic priorities of your organization Understand what the future has in store for data catalogs


The Enterprise Data Catalog

The Enterprise Data Catalog

Author: Ole Olesen-Bagneux

Publisher: "O'Reilly Media, Inc."

Published: 2023-02-15

Total Pages: 219

ISBN-13: 149209868X

DOWNLOAD EBOOK

Combing the web is simple, but how do you search for data at work? It's difficult and time-consuming, and can sometimes seem impossible. This book introduces a practical solution: the data catalog. Data analysts, data scientists, and data engineers will learn how to create true data discovery in their organizations, making the catalog a key enabler for data-driven innovation and data governance. Author Ole Olesen-Bagneux explains the benefits of implementing a data catalog. You'll learn how to organize data for your catalog, search for what you need, and manage data within the catalog. Written from a data management perspective and from a library and information science perspective, this book helps you: Learn what a data catalog is and how it can help your organization Organize data and its sources into domains and describe them with metadata Search data using very simple-to-complex search techniques and learn to browse in domains, data lineage, and graphs Manage the data in your company via a data catalog Implement a data catalog in a way that exactly matches the strategic priorities of your organization Understand what the future has in store for data catalogs


The Data Catalog

The Data Catalog

Author: Bonnie O'Neil

Publisher: Technics Publications

Published: 2020-03-16

Total Pages: 350

ISBN-13: 9781634627870

DOWNLOAD EBOOK

Apply this definitive guide to data catalogs and select the feature set needed to empower your data citizens in their quest for faster time to insight. The data catalog may be the most important breakthrough in data management in the last decade, ranking alongside the advent of the data warehouse. The latter enabled business consumers to conduct their own analyses to obtain insights themselves. The data catalog is the next wave of this, empowering business users even further to drastically reduce time to insight, despite the rising tide of data flooding the enterprise. Use this book as a guide to provide a broad overview of the most popular Machine Learning (ML) data catalog products, and perform due diligence using the extensive features list. Consider graphical user interface (GUI) design issues such as layout and navigation, as well as scalability in terms of how the catalog will handle your current and anticipated data and metadata needs. ONeil & Frymanpresent a typology which ranges from products that focus on data lineage, curation and search, data governance, data preparation, and of course, the core capability of finding and understanding the data. The authors emphasize that machine learning is being adopted in many of these products, enabling a more elegant data democratization solution in the face of the burgeoning mountain of data that is engulfing organizations. Derek Strauss, Chairman/CEO, Gavroshe, and Former CDO, TD Ameritrade. This book is organized into three sections: Chapters 1 and 2 reveal the rationale for a data catalog and share how data scientists, data administrators, and curators fare with and without a data catalog; Chapters 3-10 present the many different types of data catalogs; Chapters 11 and 12 provide an extensive features list, current trends, and visions for the future.


The Enterprise Big Data Lake

The Enterprise Big Data Lake

Author: Alex Gorelik

Publisher: "O'Reilly Media, Inc."

Published: 2019-02-21

Total Pages: 232

ISBN-13: 1491931507

DOWNLOAD EBOOK

The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries


Data Governance

Data Governance

Author: John Ladley

Publisher: Academic Press

Published: 2019-11-08

Total Pages: 352

ISBN-13: 0128158328

DOWNLOAD EBOOK

Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition


Data Mesh

Data Mesh

Author: Zhamak Dehghani

Publisher: "O'Reilly Media, Inc."

Published: 2022-03-08

Total Pages: 387

ISBN-13: 1492092363

DOWNLOAD EBOOK

Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.


Data Governance

Data Governance

Author: Evren Eryurek

Publisher:

Published: 2021-04-13

Total Pages: 300

ISBN-13: 9781492063490

DOWNLOAD EBOOK

As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness


The Enterprise Big Data Lake

The Enterprise Big Data Lake

Author: Alex Gorelik

Publisher: O'Reilly Media

Published: 2019-02-21

Total Pages: 223

ISBN-13: 1491931523

DOWNLOAD EBOOK

The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries


Data Management at Scale

Data Management at Scale

Author: Piethein Strengholt

Publisher: "O'Reilly Media, Inc."

Published: 2020-07-29

Total Pages: 404

ISBN-13: 1492054739

DOWNLOAD EBOOK

As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata


The Self-Service Data Roadmap

The Self-Service Data Roadmap

Author: Sandeep Uttamchandani

Publisher: "O'Reilly Media, Inc."

Published: 2020-09-10

Total Pages: 297

ISBN-13: 1492075205

DOWNLOAD EBOOK

Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization