This brief presents characterizations of identification errors under a probabilistic framework when output sensors are binary, quantized, or regular. By considering both space complexity in terms of signal quantization and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources, which may represent data sizes in computer usage, computational complexity in algorithms, sample sizes in statistical analysis and channel bandwidths in communications.
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work.
The International Conference on Systems Science 2013 (ICSS 2013) was the 18th event of the series of international scientific conferences for researchers and practitioners in the fields of systems science and systems engineering. The conference took place in Wroclaw, Poland during September 10-12, 2013 and was organized by Wroclaw University of Technology and co-organized by: Committee of Automatics and Robotics of Polish Academy of Sciences, Committee of Computer Science of Polish Academy of Sciences and Polish Section of IEEE. The papers included in the proceedings cover the following topics: Control Theory, Databases and Data Mining, Image and Signal Processing, Machine Learning, Modeling and Simulation, Operational Research, Service Science, Time series and System Identification. The accepted and presented papers highlight new trends and challenges in systems science and systems engineering.
This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.
Stochastic control plays an important role in many scientific and applied disciplines including communications, engineering, medicine, finance and many others. It is one of the effective methods being used to find optimal decision-making strategies in applications. The book provides a collection of outstanding investigations in various aspects of stochastic systems and their behavior. The book provides a self-contained treatment on practical aspects of stochastic modeling and calculus including applications drawn from engineering, statistics, and computer science. Readers should be familiar with basic probability theory and have a working knowledge of stochastic calculus. PhD students and researchers in stochastic control will find this book useful.
This monograph focuses on characterizing the stability and performance consequences of inserting limited-capacity communication networks within a control loop. The text shows how integration of the ideas of control and estimation with those of communication and information theory can be used to provide important insights concerning several fundamental problems such as: · minimum data rate for stabilization of linear systems over noisy channels; · minimum network requirement for stabilization of linear systems over fading channels; and · stability of Kalman filtering with intermittent observations. A fundamental link is revealed between the topological entropy of linear dynamical systems and the capacities of communication channels. The design of a logarithmic quantizer for the stabilization of linear systems under various network environments is also extensively discussed and solutions to many problems of Kalman filtering with intermittent observations are demonstrated. Analysis and Design of Networked Control Systems will interest control theorists and engineers working with networked systems and may also be used as a resource for graduate students with backgrounds in applied mathematics, communications or control who are studying such systems.
The volume is a collection of best selected research papers presented at International Conference on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2022) held at BITS Pilani, K K Birla Goa Campus, Goa, India during 23 – 25 September 2022. It includes state-of-the art research work in the cutting-edge technologies in the field of data science and intelligent systems. The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book will be useful for academicians, research scholars, and industry persons.
Recursive Identification and Parameter Estimation describes a recursive approach to solving system identification and parameter estimation problems arising from diverse areas. Supplying rigorous theoretical analysis, it presents the material and proposed algorithms in a manner that makes it easy to understand—providing readers with the modeling and identification skills required for successful theoretical research and effective application. The book begins by introducing the basic concepts of probability theory, including martingales, martingale difference sequences, Markov chains, mixing processes, and stationary processes. Next, it discusses the root-seeking problem for functions, starting with the classic RM algorithm, but with attention mainly paid to the stochastic approximation algorithms with expanding truncations (SAAWET) which serves as the basic tool for recursively solving the problems addressed in the book. The book not only identifies the results of system identification and parameter estimation, but also demonstrates how to apply the proposed approaches for addressing problems in a range of areas, including: Identification of ARMAX systems without imposing restrictive conditions Identification of typical nonlinear systems Optimal adaptive tracking Consensus of multi-agents systems Principal component analysis Distributed randomized PageRank computation This book recursively identifies autoregressive and moving average with exogenous input (ARMAX) and discusses the identification of non-linear systems. It concludes by addressing the problems arising from different areas that are solved by SAAWET. Demonstrating how to apply the proposed approaches to solve problems across a range of areas, the book is suitable for students, researchers, and engineers working in systems and control, signal processing, communication, and mathematical statistics.
Issues in Robotics and Automation / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Robotics and Automation. The editors have built Issues in Robotics and Automation: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Robotics and Automation in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Robotics and Automation: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.