Pavement Management Applications Using Geographic Information Systems

Pavement Management Applications Using Geographic Information Systems

Author: Gerardo W. Flintsch

Publisher: Transportation Research Board

Published: 2004

Total Pages: 75

ISBN-13: 0309070147

DOWNLOAD EBOOK

TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 335: Pavement Management Applications Using Geographic Information Systems examines the state of the practice and knowledge of pavement management systems (PMS) using geographic information systems (GIS) and other spatial technologies, and discusses how the technologies have been combined to enhance the highway management process. The synthesis reviews the principal issues related to PMS data collection, integration, management, and dissemination; applications of spatial technologies for map generation and PMS spatial analysis; and implementation-related issues, including approaches used for integrating PMS and GIS and the different tools used to support pavement management decisions.


Significant Findings from Full-scale Accelerated Pavement Testing

Significant Findings from Full-scale Accelerated Pavement Testing

Author: Wynand JvdM. Steyn

Publisher: Transportation Research Board

Published: 2012

Total Pages: 257

ISBN-13: 0309223660

DOWNLOAD EBOOK

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 433: Significant Findings from Full-Scale Accelerated Pavement Testing documents and summarizes significant findings from the various experimental activities associated with full-scale accelerated pavement testing (f-sAPT) programs that have taken place between 2000 and 2011. The report also identifies gaps in knowledge related to f-sAPT and where future research may be needed. NCHRP Synthesis 433 is designed to expand the f-sAPT base of knowledge documented in NCHRP Syntheses 325 and 235, both with the same title of Significant Findings from Full-Scale Accelerated Pavement Testing. f-sAPT is the controlled application of a wheel loading, at or above the appropriate legal load limit, to a pavement system to determine pavement response in a compressed time period. The acceleration of damage is achieved by one or more of the following factors: increased repetitions, modified loading conditions, imposed climatic conditions, and thinner pavements with a decreased structural capacity which have shorter design lives"--