This is a book on the dissipative dynamics of ordered fluids, with a particular focus on liquid crystals. It covers a whole range of different theories, mainly concerned with nematic liquid crystals in both their chiral and nonchiral variants. The authors begin by giving a detailed account of the molecular origins of orientational order in fluids. They then go on to develop a general framework in which continuum theories for ordered fluids can be phrased. Within this unified setting, they cover both well-established classical theories and new ones with aspects that are not yet completely settled. The book treats a wide range of hydrodynamic theories for liquid crystals, from the original 1960s works by Ericksen and Leslie to new, fast-developing ideas of liquid crystal science. The final chapter is devoted to nematoacoustics and its applications. Old experiments on the propagation of ultrasound waves in nematic liquid crystals are interpreted and explained in the light of a new theory developed within the general theoretical infrastructure proposed in the body of the book. This book is intended both for graduate students and professional scholars in mathematics, physics, and engineering of advanced materials. It delivers a solid framework for liquid crystal hydrodynamics and shows the unifying concepts at the basis of the classical theories. It illustrates how these concepts can also be applied to a wide variety of modern topics. Andre M. Sonnet is in the Department of Mathematics and Statistics at the University of Strathclyde, Glasgow (Scotland) and Epifanio G. Virga is in the Department of Mathematics at the University of Pavia (Italy). They have a long history of working together in liquid crystal science and have contributed, in particular, to the theories of defects and biaxial nematics.
This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.
Liquid crystals allow us to perform experiments that provide insight into fundamental problems of modern physics, such as phase transitions, frustration, elasticity, hydrodynamics, defects, growth phenomena, and optics (linear and non linear). This excellent volume meets the need for an up-to-date text on liquid crystals.Nematic and Cholesteric Liq
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.
Liquid crystals have attracted scientific attention for potential applications in advanced devices. Display technology is continuously growing and expanding and, as such, this book provides an overview of the most recent advances in liquid crystals and displays. Chapters cover such topics as nematic liquid crystals, active matrix organic light-emitting diodes, and tetradentate platinum(II) emitters, among others.