Neutrosophic set is considered as a generalized of crisp set, fuzzy set, and intuitionistic fuzzy set for representing the uncertainty, inconsistency, and incomplete knowledge about the real world problems. In this paper, a neutrosophic linear programming (NLP) problem with single-valued trapezoidal neutrosophic numbers is formulated and solved. A new method based on the so-called score function to find the neutrosophic optimal solution of fully neutrosophic linear programming (FNLP) problem is proposed.
The purpose of this paper was to model, with the help of neutrosophic fuzzy numbers, the optimal financial asset portfolios, offering additional information to those investing in the capital market. The optimal neutrosophic portfolios are those categories of portfolios consisting of two or more financial assets, modeled using neutrosophic triangular numbers, that allow for the determination of financial performance indicators, respectively the neutrosophic average, the neutrosophic risk, for each financial asset, and the neutrosophic covariance as well as the determination of the portfolio return, respectively of the portfolio risk.
In a world of chaotic alignments, traditional logic with its strict boundaries of truth and falsity has not imbued itself with the capability of reflecting the reality. Despite various attempts to reorient logic, there has remained an essential need for an alternative system that could infuse into itself a representation of the real world. Out of this need arose the system of Neutrosophy (the philosophy of neutralities, introduced by FLORENTIN SMARANDACHE), and its connected logic Neutrosophic Logic, which is a further generalization of the theory of Fuzzy Logic. In this book we study the concepts of Fuzzy Cognitive Maps (FCMs) and their Neutrosophic analogue, the Neutrosophic Cognitive Maps (NCMs). Fuzzy Cognitive Maps are fuzzy structures that strongly resemble neural networks, and they have powerful and far-reaching consequences as a mathematical tool for modeling complex systems. Neutrosophic Cognitive Maps are generalizations of FCMs, and their unique feature is the ability to handle indeterminacy in relations between two concepts thereby bringing greater sensitivity into the results. Some of the varied applications of FCMs and NCMs which has been explained by us, in this book, include: modeling of supervisory systems; design of hybrid models for complex systems; mobile robots and in intimate technology such as office plants; analysis of business performance assessment; formalism debate and legal rules; creating metabolic and regulatory network models; traffic and transportation problems; medical diagnostics; simulation of strategic planning process in intelligent systems; specific language impairment; web-mining inference application; child labor problem; industrial relations: between employer and employee, maximizing production and profit; decision support in intelligent intrusion detection system; hyper-knowledge representation in strategy formation; female infanticide; depression in terminally ill patients and finally, in the theory of community mobilization and women empowerment relative to the AIDS epidemic.
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
This handbook in two parts covers key topics of the theory of financial decision making. Some of the papers discuss real applications or case studies as well. There are a number of new papers that have never been published before especially in Part II.Part I is concerned with Decision Making Under Uncertainty. This includes subsections on Arbitrage, Utility Theory, Risk Aversion and Static Portfolio Theory, and Stochastic Dominance. Part II is concerned with Dynamic Modeling that is the transition for static decision making to multiperiod decision making. The analysis starts with Risk Measures and then discusses Dynamic Portfolio Theory, Tactical Asset Allocation and Asset-Liability Management Using Utility and Goal Based Consumption-Investment Decision Models.A comprehensive set of problems both computational and review and mind expanding with many unsolved problems are in an accompanying problems book. The handbook plus the book of problems form a very strong set of materials for PhD and Masters courses both as the main or as supplementary text in finance theory, financial decision making and portfolio theory. For researchers, it is a valuable resource being an up to date treatment of topics in the classic books on these topics by Johnathan Ingersoll in 1988, and William Ziemba and Raymond Vickson in 1975 (updated 2 nd edition published in 2006).
The ?Vedas? are considered ?divine? in origin and are assumed to be revelations from God. In traditional Hinduism, the Vedas were to be learnt only by the ?upper? caste Hindus. The ?lower castes? (Sudras) and so-called ?untouchables? (who were outside the Hindu social order) were forbidden from even hearing to its recitation. In recent years, there have been claims that the Vedas contain the cure to AIDS and the production of electricity.Here the authors probe into Vedic Mathematics (that gained renown during the revivalist Hindutva rule in India and was introduced into school syllabus in several states); and explore if it is really ?Vedic? in origin or ?Mathematics? in content. To gain a better understanding of its imposition, we interviewed students, teachers, parents, educationists and activists. We analyze this problem using models like Fuzzy Cognitive Maps (FCM), Fuzzy Relational Maps (FRM) and newly constructed Fuzzy Dynamical System (and their Neutrosophic Analogues). The issue of imposition of Vedic Mathematics into the school curriculum involves religious politics, caste supremacy, apart from elementary arithmetic ? so we use fuzzy and neutrosophic techniques to gain acute insight into how students have been affected because of this politically motivated syllabus revision.
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.