Foreword; Preface; Introduction to radio frequencies; Signals and noise; Radio receivers; RF amplifiers; Mixers; Oscillators; IF amplifiers and filters; Demodulators; Capacitors; Inductors; Tuning and matching; Splitters and hybrids; Monolithic microwave integrated circuits; Measuring inductors and capacitors; RF power measurement; Filtering against EMI/RFI; Noise cancellation bridges; Bibliography; Index.
Summarizes the schemes and technologies in RF circuit design, describes the basic parameters of an RF system and the fundamentals of RF system design, and presents an introduction of the individual RF circuit block design. Forming the backbone of today's mobile and satellite communications networks, radio frequency (RF) components and circuits are incorporated into everything that transmits or receives a radio wave, such as mobile phones, radio, WiFi, and walkie talkies. RF Circuit Design, Second Edition immerses practicing and aspiring industry professionals in the complex world of RF design. Completely restructured and reorganized with new content, end-of-chapter exercises, illustrations, and an appendix, the book presents integral information in three complete sections: Part One explains the different methodologies between RF and digital circuit design and covers voltage and power transportation, impedance matching in narrow-band case and wide-band case, gain of a raw device, measurement, and grounding. It also goes over equipotentiality and current coupling on ground surface, as well as layout and packaging, manufacturability of product design, and radio frequency integrated circuit (RFIC). Part Two includes content on the main parameters and system analysis in RF circuit design, the fundamentals of differential pair and common-mode rejection ratio (CMRR), Balun, and system-on-a-chip (SOC). Part Three covers low-noise amplifier (LNA), power amplifier (PA), voltage-controlled oscillator (VCO), mixers, and tunable filters. RF Circuit Design, Second Edition is an ideal book for engineers and managers who work in RF circuit design and for courses in electrical or electronic engineering.
This book provides a comprehensive review of the state of the art in tunable RF for mobile handsets. With chapters contributed by industry experts who collectively represent the vast majority of today’s tunable RF product revenue, the book supplies essential background in the underlying technologies and theories to give readers the tools necessary to ride the tunable RF wave successfully. Numerous examples and case studies demonstrate the application of the technologies and highlight the differences and trade-offs between alternate technologies and implementation methodologies.
It's Back! New chapters, examples, and insights; all infused with the timeless concepts and theories that have helped RF engineers for the past 25 years!RF circuit design is now more important than ever as we find ourselves in an increasingly wireless world. Radio is the backbone of today's wireless industry with protocols such as Bluetooth, Wi-Fi, WiMax, and ZigBee. Most, if not all, mobile devices have an RF component and this book tells the reader how to design and integrate that component in a very practical fashion. This book has been updated to include today's integrated circuit (IC) and system-level design issues as well as keeping its classic "wire lead" material. Design Concepts and Tools Include•The Basics: Wires, Resistors, Capacitors, Inductors•Resonant Circuits: Resonance, Insertion Loss •Filter Design: High-pass, Bandpass, Band-rejection•Impedance Matching: The L Network, Smith Charts, Software Design Tools•Transistors: Materials, Y Parameters, S Parameters•Small Signal RF Amplifier: Transistor Biasing, Y Parameters, S Parameters•RF Power Amplifiers: Automatic Shutdown Circuitry , Broadband Transformers, Practical Winding Hints•RF Front-End: Architectures, Software-Defined Radios, ADC's Effects•RF Design Tools: Languages, Flow, ModelingCheck out this book's companion Web site at: http://www.elsevierdirect.com/companion.jsp?ISBN=9780750685184 for full-color Smith Charts and extra content! - Completely updated but still contains its classic timeless information - Two NEW chapters on RF Front-End Design and RF Design Tools - Not overly math intensive, perfect for the working RF and digital professional that need to build analog-RF-Wireless circuits
BUILD THE CIRCUITS THAT MAKE WIRELESS WORK If you like hands-on electronics, you’ll love Secrets of RF Circuit Design, Third Edition, by Popular Electronics writer Joe Carr. This update of the favorite RF circuit guide of thousands of electronics enthusiasts takes you inside wireless technology with step-by-step, illustrated directions for dozens of usable projects. This super guide demonstrates RF theory as it shows you how to overcome the technical and materials challenges facing those who build real-world electronics. You learn how to design and build receiver circuits, RF bridges, amplifiers, receiver preselectors, simple spectrum analyzers, and time domain reflectometers. You get detailed insights into simple RF instruments, as well as UHF and microwave components...complete troubleshooting guidance...and handy parts lists and components sources. This new edition packs the latest information on directional and hybrid couplers, and seven new chapters on demodulators, circuit vectors, measuring L-C circuits, and filtering circuits against EMI. “...a great book on wireless technology for persons starting out in RF electronics, as well as for RF technicians and ham radio operators.” ---Cotter W. Sayre, author of The Complete RF Technician’s Handbook (Amazon.com review)
Here is the one and only book you need to get up to speed fast on the latest developments and key applications of radio frequency (RF) engineering technology. This valuable reference tool helps high-tech and non-tech professionals alike gain a solid, broad understanding of the many types of RF systems and equipment in use today.
A much-needed, up-to-date guide to the rapidly growing area of RF circuit design, this book walks readers through a whole range of new and improved techniques for the analysis and design of receiver and transmitter circuits, illustrating them through examples from modern-day communications systems. The application of MMIC to RF design is also discussed.
This comprehensive resource explains the theory of RF circuits and systems and the practice of designing them. The fundamentals for linear and low noise amplifier designs, including the S and noise parameters and their applications in amplifier designs and matching network designs using the Smith chart are covered. Theories of RF power amplifiers and high efficiency power amplifiers are also explained. The underpinnings of wireless communications systems as well as passive components commonly used in RF circuits and measurements are discussed. RF measurement techniques and RF switches are also presented. The book explores stability criteria and the invariant property of lossless networks and includes detailed theoretical treatments. The basic concepts and techniques covered in this book are routinely used in today's engineering practice, especially from the perspective of printed circuit board (PCB) based RF circuit design and system integration. Intended for practicing engineers and circuit designers, this book focuses on practical topics in circuit design and measurement techniques. It bridges the gap between academic materials and real circuit designs using real circuit examples and practical tips. Readers develop a numerical feel for RF problems as well as awareness of the concepts of design for cost and design for manufacturing, which is a critical skill set for today's engineers working in an environment of commercial product development.
The art of RF circuit design made simple... Radio Frequency circuits are the fundamental building blocks in a vast array of consumer electronics and wireless communication devices. Jeremy Everard's unique combination of theory and practice provides insight into the principles of operation, together with invaluable guidance to developing robust and long-lasting circuit designs. Features include: * Simplified approach to RF circuit theory and device modelling using algebraic approximations to illustrate the important underlying principles. * A comprehensive design guide to low noise oscillators backed by a full theoretical treatment, based on the author's latest research, and including extensive design examples. * Key concepts of broad and narrow band small signal amplifiers, mixers, and high-efficiency broadband power amplifier design. * How to develop large signal circuit models with simulation and tuning in real time. * Charts of performance parameters for RF chip components. Advanced undergraduate and postgraduate students in RF and microwave circuit design will benefit from the practical and highly illustrative approach. Design and research engineers and industrial technical managers, will appreciate the basic and detailed theory, analysis, design and operation of RF and microwave circuits.