Random Fourier Series with Applications to Harmonic Analysis. (AM-101), Volume 101

Random Fourier Series with Applications to Harmonic Analysis. (AM-101), Volume 101

Author: Michael B. Marcus

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 152

ISBN-13: 1400881536

DOWNLOAD EBOOK

In this book the authors give the first necessary and sufficient conditions for the uniform convergence a.s. of random Fourier series on locally compact Abelian groups and on compact non-Abelian groups. They also obtain many related results. For example, whenever a random Fourier series converges uniformly a.s. it also satisfies the central limit theorem. The methods developed are used to study some questions in harmonic analysis that are not intrinsically random. For example, a new characterization of Sidon sets is derived. The major results depend heavily on the Dudley-Fernique necessary and sufficient condition for the continuity of stationary Gaussian processes and on recent work on sums of independent Banach space valued random variables. It is noteworthy that the proofs for the Abelian case immediately extend to the non-Abelian case once the proper definition of random Fourier series is made. In doing this the authors obtain new results on sums of independent random matrices with elements in a Banach space. The final chapter of the book suggests several directions for further research.


Random Fourier Series with Applications to Harmonic Analysis

Random Fourier Series with Applications to Harmonic Analysis

Author: Michael B. Marcus

Publisher: Princeton University Press

Published: 1981-11-21

Total Pages: 164

ISBN-13: 9780691082929

DOWNLOAD EBOOK

The changes to U.S. immigration law that were instituted in 1965 have led to an influx of West African immigrants to New York, creating an enclave Harlem residents now call ''Little Africa.'' These immigrants are immediately recognizable as African in their wide-sleeved robes and tasseled hats, but most native-born members of the community are unaware of the crucial role Islam plays in immigrants' lives. Zain Abdullah takes us inside the lives of these new immigrants and shows how they deal with being a double minority in a country where both blacks and Muslims are stigmatized. Dealing with this dual identity, Abdullah discovers, is extraordinarily complex. Some longtime residents embrace these immigrants and see their arrival as an opportunity to reclaim their African heritage, while others see the immigrants as scornful invaders. In turn, African immigrants often take a particularly harsh view of their new neighbors, buying into the worst stereotypes about American-born blacks being lazy and incorrigible. And while there has long been a large Muslim presence in Harlem, and residents often see Islam as a force for social good, African-born Muslims see their Islamic identity disregarded by most of their neighbors. Abdullah weaves together the stories of these African Muslims to paint a fascinating portrait of a community's efforts to carve out space for itself in a new country. -- Book jacket.


Harmonic Analysis and the Theory of Probability

Harmonic Analysis and the Theory of Probability

Author: Saloman Bochner

Publisher: Univ of California Press

Published: 2023-11-15

Total Pages: 184

ISBN-13: 0520345290

DOWNLOAD EBOOK

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1955.


Classical and Multilinear Harmonic Analysis: Volume 1

Classical and Multilinear Harmonic Analysis: Volume 1

Author: Camil Muscalu

Publisher: Cambridge University Press

Published: 2013-01-31

Total Pages: 389

ISBN-13: 1139619160

DOWNLOAD EBOOK

This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.


$\xi $-Radial Processes and Random Fourier Series

$\xi $-Radial Processes and Random Fourier Series

Author: Michael B. Marcus

Publisher: American Mathematical Soc.

Published: 1987

Total Pages: 193

ISBN-13: 0821824325

DOWNLOAD EBOOK

A -radial process is a stochastic process whose finite joint distributions are defined in terms of a symmetric real valued infinitely divisible random variable . This monograph is a study of the sample path continuity of a certain class of stationary stochastic processes.


Asymptotic Behaviour of Linearly Transformed Sums of Random Variables

Asymptotic Behaviour of Linearly Transformed Sums of Random Variables

Author: V.V. Buldygin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 512

ISBN-13: 9401155682

DOWNLOAD EBOOK

Limit theorems for random sequences may conventionally be divided into two large parts, one of them dealing with convergence of distributions (weak limit theorems) and the other, with almost sure convergence, that is to say, with asymptotic prop erties of almost all sample paths of the sequences involved (strong limit theorems). Although either of these directions is closely related to another one, each of them has its own range of specific problems, as well as the own methodology for solving the underlying problems. This book is devoted to the second of the above mentioned lines, which means that we study asymptotic behaviour of almost all sample paths of linearly transformed sums of independent random variables, vectors, and elements taking values in topological vector spaces. In the classical works of P.Levy, A.Ya.Khintchine, A.N.Kolmogorov, P.Hartman, A.Wintner, W.Feller, Yu.V.Prokhorov, and M.Loeve, the theory of almost sure asymptotic behaviour of increasing scalar-normed sums of independent random vari ables was constructed. This theory not only provides conditions of the almost sure convergence of series of independent random variables, but also studies different ver sions of the strong law of large numbers and the law of the iterated logarithm. One should point out that, even in this traditional framework, there are still problems which remain open, while many definitive results have been obtained quite recently.


Featured Reviews in "Mathematical Reviews" 1995-1996

Featured Reviews in

Author: Donald G. Babbitt

Publisher: American Mathematical Soc.

Published:

Total Pages: 394

ISBN-13: 9780821895191

DOWNLOAD EBOOK

This collection of reprinted 'Featured Reviews' published in Mathematical Reviews (MR) in 1995 and 1996 makes widely available informed reviews of some of the best mathematics published recently. 'Featured Reviews' were introduced in MR at the beginning of 1995 in part to provide some guidance to the current research-level literature. With the exponential growth of publications in mathematical research in the first half-century of MR, it had become essentially impossible for users of MR to identify the most important new research-level books and papers, especially in fields outside of the users' own expertise. This work identifies some of the "best" new publications, papers, and books that are expected to have a significant impact on the area of pure or applied mathematics with which researchers are concerned. All of the papers reviewed here contain interesting new ideas or applications, a deep synthesis of existing ideas, or any combination of these. The volume is intended to lead the user to important new research across all fields covered by MR.