This book is dedicated to studying the ocean with radar tools, in particular, with space radars. Being intended mainly for the scientists preoccupied with the problem (as well as senior course students), it concentrates and generalizes the knowledge scattered over specialized journals. The significant part of the book contains the results obtained by the author. - Systematically collects and describes the approaches used by different laboratories and institutions - Deals with the physics of radar imagery and specifically with ocean surface imagery - Useful for students and researchers specializing in the area of ocean remote sensing using airborne or space-borne radars, both SAR and RAR
Nonlinear Ocean Dynamics: Synthetic Aperture Radar delivers the critical tools needed to understand the latest technology surrounding the radar imaging of nonlinear waves, particularly microwave radar, as a main source to understand, analyze and apply concepts in the field of ocean dynamic surface. Filling the gap between modern physics quantum theory and applications of radar imaging of ocean dynamic surface, this reference is packed with technical details associated with the potentiality of synthetic aperture radar (SAR). The book also includes key methods needed to extract the value-added information necessary, such as wave spectra energy, current pattern velocity, internal waves, and more. This book also reveals novel speculation of a shallow coastal front: named as Quantized Marghany's Front. Rounding out with practical simulations of 4-D wave-current interaction patterns using using radar images, the book brings an effective new source of technology and applications for today's coastal scientists and engineers. - Solves specific problems surrounding the nonlinearity of ocean surface dynamics in synthetic aperture radar data - Helps develop new algorithms for retrieving ocean wave spectra and ocean current movements from synthetic aperture radar - Includes over 100 equations that illustrate how to follow examples in the book
Measuring Ocean Currents: Tools, Technologies, and Data covers all major aspects of ocean current measurements in view of the implications of ocean currents on changing climate, increasing pollution levels, and offshore engineering activities. Although more than 70% of the Earth is covered by ocean, there is limited information on the countless fine- to large-scale water motions taking place within them. This book fills that information gap as the first work that summarizes the state-of-the-art methods and instruments used for surface, subsurface, and abyssal ocean current measurements. Readers of this book will find a wealth of information on Lagrangian measurements, horizontal mapping, imaging, Eulerian measurements, and vertical profiling techniques. In addition, the book describes modern technologies for remote measurement of ocean currents and their signatures, including HF Doppler radar systems, satellite-borne sensors, ocean acoustic tomography, and more. Crucial aspects of ocean currents are described in detail as well, including dispersion of effluents discharged into the sea and transport of beneficial materials—as well as environmentally hazardous materials—from one region to another. The book highlights several important practical applications, showing how measurements relate to climate change and pollution levels, how they affect coastal and offshore engineering activities, and how they can aid in tsunami detection. - Coverage of measurement, mapping and profiling techniques - Descriptions of technologies for remote measurement of ocean currents and their signatures - Reviews crucial aspects of ocean currents, including special emphasis on the planet-spanning thermohaline circulation, known as the ocean's "conveyor belt," and its crucial role in climate change
The science and engineering of remote sensing--theory and applications The Second Edition of this authoritative book offers readers the essential science and engineering foundation needed to understand remote sensing and apply it in real-world situations. Thoroughly updated to reflect the tremendous technological leaps made since the publication of the first edition, this book covers the gamut of knowledge and skills needed to work in this dynamic field, including: * Physics involved in wave-matter interaction, the building blocks for interpreting data * Techniques used to collect data * Remote sensing applications The authors have carefully structured and organized the book to introduce readers to the basics, and then move on to more advanced applications. Following an introduction, Chapter 2 sets forth the basic properties of electromagnetic waves and their interactions with matter. Chapters 3 through 7 cover the use of remote sensing in solid surface studies, including oceans. Each chapter covers one major part of the electromagnetic spectrum (e.g., visible/near infrared, thermal infrared, passive microwave, and active microwave). Chapters 8 through 12 then cover remote sensing in the study of atmospheres and ionospheres. Each chapter first presents the basic interaction mechanism, followed by techniques to acquire, measure, and study the information, or waves, emanating from the medium under investigation. In most cases, a specific advanced sensor is used for illustration. The book is generously illustrated with fifty percent new figures. Numerous illustrations are reproduced in a separate section of color plates. Examples of data acquired from spaceborne sensors are included throughout. Finally, a set of exercises, along with a solutions manual, is provided. This book is based on an upper-level undergraduate and first-year graduate course taught by the authors at the California Institute of Technology. Because of the multidisciplinary nature of the field and its applications, it is appropriate for students in electrical engineering, applied physics, geology, planetary science, astronomy, and aeronautics. It is also recommended for any engineer or scientist interested in working in this exciting field.
This book and its companion volume, LNCS vols. 7928 and 7929 constitute the proceedings of the 4th International Conference on Swarm Intelligence, ICSI 2013, held in Harbin, China in June 2013. The 129 revised full papers presented were carefully reviewed and selected from 268 submissions. The papers are organized in 22 cohesive sections covering all major topics of swarm intelligence research and developments. The following topics are covered in this volume: analysis of swarm intelligence based algorithms, particle swarm optimization, applications of particle swarm optimization algorithms, ant colony optimization algorithms, biogeography-based optimization algorithms, novel swarm-based search methods, bee colony algorithms, differential evolution, neural networks, fuzzy methods, evolutionary programming and evolutionary games.
In 1960, Dr. George Deacon ofthe National Institute ofOceanography in England organized a meeting in Easton, Maryland that summarized the state of our understanding at that time of ocean wave statistics and dynamics. It was a pivotal occasion: spectral techniques for wave measurement were beginning to be used, wave-wave interactions hadjust been discovered, and simple models for the growth of waves by wind were being developed. The meeting laid the foundation for much work that was to follow, but one could hardly have imagined the extent to which new techniques of measurement, particularly by remote sensing, new methods of calculation and computation, and new theoretical and laboratory results would, in the following twenty years, build on this base. When Gaspar Valenzuela of the V. S. Naval Research Laboratory perceived that the time was right for a second such meeting, it was natural that Sir George Deacon would be invited to serve as honorary chairman for the meeting, and the entire waves community was delighted at his acceptance. The present volume contains reviewed and edited papers given at this second meeting, held this time in Miami, Florida, May 13-20, 1981, with the generous support of the Office of Naval Research, the National Aeronautics and Space Administration, and the National Oceanic and Atmospheric Administration.