Neutron Scattering from Magnetic Materials

Neutron Scattering from Magnetic Materials

Author: Tapan Chatterji

Publisher: Elsevier

Published: 2005-11-29

Total Pages: 574

ISBN-13: 0080457053

DOWNLOAD EBOOK

Neutron Scattering from Magnetic Materials is a comprehensive account of the present state of the art in the use of the neutron scattering for the study of magnetic materials. The chapters have been written by well-known researchers who are at the forefront of this field and have contributed directly to the development of the techniques described. Neutron scattering probes magnetic phenomena directly. The generalized magnetic susceptibility, which can be expressed as a function of wave vector and energy, contains all the information there is to know about the statics and dynamics of a magnetic system and this quantity is directly related to the neutron scattering cross section. Polarized neutron scattering techniques raise the sophistication of measurements to even greater levels and gives additional information in many cases. The present book is largely devoted to the application of polarized neutron scattering to the study of magnetic materials. It will be of particular interest to graduate students and researchers who plan to investigate magnetic materials using neutron scattering.· Written by a group of scientist who have contributed directly in developing the techniques described.· A complete treatment of the polarized neutron scattering not available in literature.· Gives practical hits to solve magnetic structure and determine exchange interactions in magnetic solids.· Application of neutron scattering to the study of the novel electronic materials.


Elements of Slow-Neutron Scattering

Elements of Slow-Neutron Scattering

Author: J. M. Carpenter

Publisher: Cambridge University Press

Published: 2015-09-24

Total Pages: 539

ISBN-13: 0521857813

DOWNLOAD EBOOK

This book provides a comprehensive and up-to-date introduction to the fundamental theory and applications of slow-neutron scattering.


Magnetic Neutron Diffraction

Magnetic Neutron Diffraction

Author: Yurii A. Izyumov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 607

ISBN-13: 1468407120

DOWNLOAD EBOOK

The inter action between the magnetic field generated by the neutron and the magnetic moment of atoms containing unpaired electrons was experimentally demonstrated for the first time about twenty years ago. The basic theory describing such an in teraction had already been developed and the first nuclear reactors with large available thermal neutron fluxes had recently been con structed. The power of the magnetic neutron interaction for in vestigating the structure of magnetic materials was immediately recognized and put to use where possible. Neutron diffraction, however, was practicable only in countries with nuclear reactors. The earliest neutron determinations of magnetic ordering were hence primarily carried out at Oak Ridge and Brookhaven in the US, at Chalk River in Canada and at Harwell in England. Diffraction patterns from polycrystalline ferromagnets and antiferromagnets are interpretable if produced by simple spin arrays. More complex magnetic scattering patterns could often be unravelled, in terms of a three-dimensional array of atomic moments, if the specimen studied is a single crystal. The devel opment of sophisticated cryogenic equipment, with independently alignable magnetic fields, opened the way to greater complexity in the magnetic structures that could be successfully determined, as did also the introduction of polarized neutron beams. By the end of the 'sixties, many countries were contributing significantly to neutron diffraction studies of a wide variety of magnetic materials.


Modern Techniques for Characterizing Magnetic Materials

Modern Techniques for Characterizing Magnetic Materials

Author: Yimei Zhu

Publisher: Springer Science & Business Media

Published: 2005-12-06

Total Pages: 628

ISBN-13: 0387233954

DOWNLOAD EBOOK

Modern Techniques for Characterizing Magnetic Materials provides an extensive overview of novel characterization tools for magnetic materials including neutron, photon and electron scatterings and other microscopy techniques by world-renowned scientists. This interdisciplinary reference describes all available techniques to characterize and to understand magnetic materials, techniques that cover a wide range of length scales and belong to different scientific communities. The diverse contributions enhance cross-discipline communication, while also identifying both the drawbacks and advantages of different techniques, which can result in deriving effective combinations of techniques that are especially fruitful at nanometer scales. It will be a valuable resource for all graduate students, researchers, engineers and scientists who are interested in magnetic materials including their crystal structure, electronic structure, magnetization dynamics and their associated magnetic properties and underlying magnetism.


Neutron Diffraction of Magnetic Materials

Neutron Diffraction of Magnetic Materials

Author: Izyumov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 349

ISBN-13: 1461536588

DOWNLOAD EBOOK

Detennination of the magnetic structure of magnetic materials is a fundamental problem that can be solved by magnetic neutron diffraction techniques. By magnetic structures we refer to the mutual alignment of the magnetic moments of the atoms in a crystal and their overall alignment relative to the crystallographic axes. Some indirect, tentative data on the magnetic structure of magnetic materials can be obtained from research on their magnetic, mechanical, thermal, and other properties. But only neutron diffraction is a unique direct method of detennining the magnetic structure of a crystal. The magnetic structure of more than one thousand crystals with magnetic order has been studied during 30 years of neutron diffraction research made on reactors in a large number of laboratories in the world. The results of this research work are extensively described in the handbook Magnetic Structures Determined by Neutron Diffraction [176]; in the present book, we will often refer to this handbook. The first extensive theoretical generalization of the principles of magnetic neutron diffraction and the results of research on magnetic structures appeared in the book by Yu. A. Izyumov and R. P. Ozerov Magnetic Neutron Diffraction [24, 134].


Magnetic Small-Angle Neutron Scattering

Magnetic Small-Angle Neutron Scattering

Author: Andreas Michels

Publisher: Oxford University Press

Published: 2021

Total Pages: 374

ISBN-13: 0198855176

DOWNLOAD EBOOK

Magnetic Small-Angle Neutron Scattering provides the first extensive treatment of magnetic small-angle neutron scattering (SANS). The theoretical background required to compute magnetic SANS cross sections and correlation functions related to long-wavelength magnetization structures is laidout. The concepts are scrutinized based on the discussion of experimental neutron data. Regarding prior background knowledge, some familiarity with the basic magnetic interactions and phenomena as well as scattering theory is desired.Besides exposing the different origins of magnetic SANS, and furnishing the basics of the magnetic SANS technique in early chapters, a large part of the book is devoted to a comprehensive treatment of the continuum theory of micromagnetics, as it is relevant for the study of the elastic magneticSANS cross section. Analytical expressions for the magnetization Fourier components allow to highlight the essential features of magnetic SANS and to analyze experimental data both in reciprocal, as well as in real space. Later chapters provide an overview on the magnetic SANS of nanoparticles andso-called complex systems (e.g., ferrofluids, magnetic steels, spin glasses and amorphous magnets). It is this subfield where major progress is expected to be made in the coming years, mainly via the increased usage of numerical micromagnetic simulations (Chapter 7), which is a very promisingapproach for the understanding of the magnetic SANS from systems exhibiting nanoscale spin inhomogeneity.


Introduction to the Theory of Thermal Neutron Scattering

Introduction to the Theory of Thermal Neutron Scattering

Author: G. L. Squires

Publisher: Cambridge University Press

Published: 2012-03-29

Total Pages: 273

ISBN-13: 1107644062

DOWNLOAD EBOOK

A long-awaited reprint of the book that has established itself as the classic textbook on neutron scattering. It will be an invaluable introductory text for students taking courses on neutron scattering, as well as for researchers and those who would like to deepen their knowledge on the subject through self-study.


Magnetic Measurement Techniques for Materials Characterization

Magnetic Measurement Techniques for Materials Characterization

Author: Victorino Franco

Publisher: Springer Nature

Published: 2021-09-28

Total Pages: 814

ISBN-13: 3030704432

DOWNLOAD EBOOK

This book discusses the most commonly used techniques for characterizing magnetic material properties and their applications. It provides a comprehensive and easily digestible collection and review of magnetic measurement techniques. It also examines the underlying operating principles and techniques of magnetic measurements, and presents current examples where such measurements and properties are relevant. Given the pervasive nature of magnetic materials in everyday life, this book is a vital resource for both professionals and students wishing to deepen their understanding of the subject.


Experimental Neutron Scattering

Experimental Neutron Scattering

Author: B. T. M. Willis

Publisher: Oxford University Press

Published: 2017-03-23

Total Pages: 325

ISBN-13: 0191545473

DOWNLOAD EBOOK

The first systematic experiments in neutron scattering were carried out in the late 1940s using fission reactors built for the nuclear power programme. Crystallographers were amongst the first to exploit the new technique, but they were soon followed by condensed matter physicists and chemists. Engineers and biologists are the most recent recruits to the club of neutron users. The aim of the book is to provide a broad survey of the experimental activities of all these users. There are many specialist monographs describing particular examples of the application of neutron scattering: fifteen of such monographs have been published already in the Oxford University Press series edited by S. Lovesey and E. Mitchell. However this book will appeal to newcomers to the field of neutron scattering, who may be intimidated by the bewildering array of instruments at central facilities (such as the Institut Laue Langevin in France, the ISIS Laboratory in the UK, or the PSI Laboratory in Switzerland), and who may be uncertain as to which instrument to use.