Physics of Atoms and Ions

Physics of Atoms and Ions

Author: Boris M. Smirnov

Publisher: Springer Science & Business Media

Published: 2006-05-17

Total Pages: 451

ISBN-13: 0387217304

DOWNLOAD EBOOK

Intended for advanced students of physics, chemistry and related disciplines, this text treats the quantum theory of atoms and ions within the framework of self-consistent fields. Data needed for the analysis of collisions and other atomic processes are also included.


Computational Atomic Physics

Computational Atomic Physics

Author: Klaus Bartschat

Publisher: Springer

Published: 2013-06-29

Total Pages: 264

ISBN-13: 3642610102

DOWNLOAD EBOOK

Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.


Reference Data on Atoms, Molecules, and Ions

Reference Data on Atoms, Molecules, and Ions

Author: A.A. Radzig

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 475

ISBN-13: 3642820484

DOWNLOAD EBOOK

This reference book contains information about the structure and properties of atomic and molecular particles, as well as some of the nuclear parameters. It includes data which can be of use when studying atomic and molecular processes in the physics of gases, chemistry of gases and gas optics, in plasma physics and plasma chemistry, in physical chemistry and radiation chemistry, in geophysics, astrophysics, solid-state physics and a variety of cross-discipli nary fields of science and technology. Our aim was to collect carefully selected and estimated numerical values for a wide circle of microscopic parameters in a relatively "not thick" book. These values are of constant use in the work of practical investigators. In essence, the book represents a substantially revised and extended edi tion of our reference book published in Russian in 1980. Two main reasons made it necessary to rework the material. On the one hand, a great deal of new high-quality data has appeared in the past few years and furthermore we have enlisted many sources of information previously inaccessible to us. On the other hand, we have tried to insert extensive information on new, rapidly progressing branches of physical research, such as multiply charged ions, Rydberg atoms, van der Waals and excimer molecules, complex ions, etc. All this brings us to the very edge of studies being carried out in the field.


Physics of Highly Charged Ions

Physics of Highly Charged Ions

Author: R.K. Janev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 342

ISBN-13: 3642691951

DOWNLOAD EBOOK

The physics of highly charged ions has become an essential ingredient of many modern research fields, such as x-ray astronomy and astrophysics, con trolled thermonuclear fusion, heavy ion nuclear physics, charged particle ac celerator physics, beam-foil spectroscopy, creation of xuv and x-ray lasers, etc. A broad spectrum of phenomena in high-temperature laboratory and astrophysical plasmas, as well as many aspects of their global physical state and behaviour, are directly influenced, and often fully determined, by the structure and collision properties of multiply charged ions. The growth of in terest in the physics of highly charged ions, experienced especially in the last ten to fifteen years, has stimulated a dramatic increase in research activity in this field and resulted in numerous significant achievements of both fun damental and practical importance. This book is devoted to the basic aspects of the physics of highly charged ions. Its principal aim is to provide a basis for understanding the structure and spectra of these ions, as well as their interactions with other atomic par ticles (electrons, ions, atoms and molecules). Particular attention is paid to the presentation of theoretical methods for the description of different radi ative and collision phenomena involving multiply charged ions. The exper imental material is included only to illustrate the validity of theoretical methods or to demonstrate those physical phenomena for which adequate theoretical descriptions are still absent. The general principles of atomic spectroscopy are included to the extent to which they are pertinent to the subject matter.


Precision Physics of Simple Atoms and Molecules

Precision Physics of Simple Atoms and Molecules

Author: Savely G. Karshenboim

Publisher: Springer

Published: 2007-12-11

Total Pages: 284

ISBN-13: 3540754792

DOWNLOAD EBOOK

This volume presents multidisciplinary treatments of important areas and new developments within precision physics. It concentrates on new topics and those not treated in the previous volumes about the precision physics of simple atoms, all published in LNP. For example, it concentrates on the proton structure and its effects on the energy levels, on simple molecules, on atoms somewhat more complicated than hydrogen (such as lithium), on exotic atoms and atoms with exotic nuclei.


Classical Treatment of Collisions Between Ions and Atoms or Molecules

Classical Treatment of Collisions Between Ions and Atoms or Molecules

Author: Francois Frémont

Publisher: Springer Nature

Published: 2021-12-08

Total Pages: 247

ISBN-13: 3030894282

DOWNLOAD EBOOK

Since the beginning of the twentieth century, many experimental and theoretical works have been devoted to collisions between highly charged ions and atomic and molecular targets. It was realized that quantum mechanics is the only way, a priori, to describe such atomic phenomena. However, since quantum mechanics is very difficult to apply for collision systems with more than two particles, classical methods were very soon introduced and applied to simple collision systems and, subsequently, to more complicated systems. The results obtained by such classical methods were found to be surprisingly good, and classical mechanics is now well established, despite its approximations, as a replacement for or competition with quantum mechanics in many cases. In this book, the author will focus on the development of classical methods for describing collisional and post-collisional processes. The results will be compared with those found using quantum mechanical models, in order to demonstrate the ability of the classical approach to obtain many features and details of collision systems.


Atoms, Molecules and Photons

Atoms, Molecules and Photons

Author: Wolfgang Demtröder

Publisher: Springer

Published: 2019-02-09

Total Pages: 561

ISBN-13: 3662555239

DOWNLOAD EBOOK

This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised third edition with new sections covering all actual developments, like photonics, ultrashort lasers, ultraprecise frequency combs, free electron lasers, cooling and trapping of atoms, quantum optics and quantum information.


Relativistic Quantum Theory of Atoms and Molecules

Relativistic Quantum Theory of Atoms and Molecules

Author: Ian P Grant

Publisher: Springer Science & Business Media

Published: 2007-04-15

Total Pages: 813

ISBN-13: 0387350691

DOWNLOAD EBOOK

This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.


An Introduction to the Atomic and Radiation Physics of Plasmas

An Introduction to the Atomic and Radiation Physics of Plasmas

Author: G. J. Tallents

Publisher: Cambridge University Press

Published: 2018-02-22

Total Pages: 313

ISBN-13: 1108318010

DOWNLOAD EBOOK

Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.