Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures

Author: Jasprit Singh

Publisher: Cambridge University Press

Published: 2007-03-26

Total Pages: 556

ISBN-13: 1139440578

DOWNLOAD EBOOK

A graduate textbook presenting the underlying physics behind devices that drive today's technologies. The book covers important details of structural properties, bandstructure, transport, optical and magnetic properties of semiconductor structures. Effects of low-dimensional physics and strain - two important driving forces in modern device technology - are also discussed. In addition to conventional semiconductor physics the book discusses self-assembled structures, mesoscopic structures and the developing field of spintronics. The book utilizes carefully chosen solved examples to convey important concepts and has over 250 figures and 200 homework exercises. Real-world applications are highlighted throughout the book, stressing the links between physical principles and actual devices. Electronic and Optoelectronic Properties of Semiconductor Structures provides engineering and physics students and practitioners with complete and coherent coverage of key modern semiconductor concepts. A solutions manual and set of viewgraphs for use in lectures are available for instructors, from [email protected].


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author: Hartmut Haug

Publisher: World Scientific Publishing Company

Published: 1994-10-31

Total Pages: 492

ISBN-13: 9813104783

DOWNLOAD EBOOK

This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics. Request Inspection Copy


Semiconductor Optics 1

Semiconductor Optics 1

Author: Heinz Kalt

Publisher: Springer Nature

Published: 2019-09-20

Total Pages: 559

ISBN-13: 3030241521

DOWNLOAD EBOOK

This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.


Optical Properties of Semiconductor Nanocrystals

Optical Properties of Semiconductor Nanocrystals

Author: S. V. Gaponenko

Publisher: Cambridge University Press

Published: 1998-10-28

Total Pages: 263

ISBN-13: 0521582415

DOWNLOAD EBOOK

Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.


Semiconductor Photonics of Nanomaterials and Quantum Structures

Semiconductor Photonics of Nanomaterials and Quantum Structures

Author: Arash Rahimi-Iman

Publisher: Springer Nature

Published: 2021-04-23

Total Pages: 288

ISBN-13: 303069352X

DOWNLOAD EBOOK

This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.


Optical Nonlinearities and Instabilities in Semiconductors

Optical Nonlinearities and Instabilities in Semiconductors

Author: Hartmut Haug

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 453

ISBN-13: 0323140947

DOWNLOAD EBOOK

Optical Nonlinearities and Instabilities in Semiconductors deals with various aspects of nonlinear optical phenomena and related optical instabilities in semiconductors. Measurements and explanations of the optical nonlinearities of various semiconductor materials and structures are presented, along with optical bistability and diode laser thresholds; self-oscillations; and chaos. This text consists of 17 chapters and begins with an introductory chapter to the historical background of investigations of the resonance-enhanced nonlinear optical properties of semiconductors and their manifestations in optical instabilities. The discussion then turns to the experimentally observed optical nonlinearities in homogeneous semiconductors and the microscopic theory of the optical band edge nonlinearities. This book considers the studies of the spectral region close to the band gap meant to exploit the resonance enhancement of the nonlinear optical behavior. The remaining chapters focus on nonlinear optical properties of semiconductor quantum wells; dense nonequilibrium excitations in gallium arsenide; optical decay and spatial relaxation; and optical bistability in semiconductor laser amplifiers. A chapter that describes instabilities in semiconductor lasers concludes the book. This book is intended for research students and active research workers who are interested in the basic physics or in the device applications of optical nonlinearities and instabilities in semiconductors.


Optical Properties of Semiconductor Quantum Dots

Optical Properties of Semiconductor Quantum Dots

Author: Ulrike Woggon

Publisher: Springer

Published: 2014-03-12

Total Pages: 252

ISBN-13: 9783662148112

DOWNLOAD EBOOK

This book presents an overview of the current understanding of the physics of zero-dimensional semiconductors. It concentrates mainly on quantum dots of wide-gap semiconductors, but touches also on zero-dimensional systems based on silicon and III-V materials. After providing the reader with a theoretical background, the author illustrates the specific properties of three-dimensionally confined semiconductors, such as the size dependence of energy states, optical transitions, and dephasing mechanisms with the results from numerous experiments in linear and nonlinear spectroscopy. Technological concepts of the growth concepts and the potential of this new class of semiconductor materials for electro-optic and nonlinear optical devices are also discussed.


Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures

Author: Giovanni Agostini

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 501

ISBN-13: 0080558151

DOWNLOAD EBOOK

In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors


Proceedings of the 17th International Conference on the Physics of Semiconductors

Proceedings of the 17th International Conference on the Physics of Semiconductors

Author: J.D. Chadi

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 1580

ISBN-13: 1461576822

DOWNLOAD EBOOK

The Proceedings of the 17th International Conference on the Physics of Semiconductors are contained in this volume. A record 1050 scientists from 40 countries participated in the Conference which was held in San Francisco August 6·1 0, 1984. The Conference was organized by the ICPS Committee and sponsored by the International Union of Pure and Applied Physics and other professional, government, and industrial organizations listed on the following pages. Papers representing progress in all aspects of semiconductor physics were presented. Far more abstracts (765) than could be presented in a five-day meeting were considered by the International Program Committee. A total of 350 papers, consisting of 5 plenary, 35 invited, and 310 contributed, were presented at the Conference in either oral or poster sessions. All but a few of the papers were submitted and have been included in these Proceedings. An interesting shift in subject matter, in comparison with earlier Conferences, is manifested by the large number of papers on surfaces, interfaces, and quantum wells. To facilitate the use of the Proceedings in finding closely related papers among the sometimes relatively large number of contributions within a main subject area, we chose not to arrange the papers strictly according to the Conference schedule. We have organized the book, as can be seen from the Contents, into specific subcategories and subdivisions within each major category. Plenary and invited papers have been placed together with the appropriate contributed papers.