Nonlinear Problems in Mathematical Physics and Related Topics

Nonlinear Problems in Mathematical Physics and Related Topics

Author: Michael Sh. Birman

Publisher: Springer Science & Business Media

Published: 2002

Total Pages: 420

ISBN-13: 9780306474224

DOWNLOAD EBOOK

The main topics in this volume reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered is the set of Navier-Stokes equations and their solutions.


Nonlinear Problems in Mathematical Physics and Related Topics I

Nonlinear Problems in Mathematical Physics and Related Topics I

Author: Michael Sh. Birman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 397

ISBN-13: 1461507774

DOWNLOAD EBOOK

The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations reading the books on quasilinear elliptic and parabolic equations written by O.A. Ladyzhenskaya with V.A. Solonnikov and N.N. Uraltseva. Her results and methods on the Navier-Stokes equations, and other mathematical problems in the theory of viscous fluids, nonlinear partial differential equations and systems, the regularity theory, some directions of computational analysis are well known. So it is no surprise that these two volumes attracted leading specialists in partial differential equations and mathematical physics from more than 15 countries, who present their new results in the various fields of mathematics in which the results, methods, and ideas of O.A. Ladyzhenskaya played a fundamental role. Nonlinear Problems in Mathematical Physics and Related Topics I presents new results from distinguished specialists in the theory of partial differential equations and analysis. A large part of the material is devoted to the Navier-Stokes equations, which play an important role in the theory of viscous fluids. In particular, the existence of a local strong solution (in the sense of Ladyzhenskaya) to the problem describing some special motion in a Navier-Stokes fluid is established. Ladyzhenskaya's results on axially symmetric solutions to the Navier-Stokes fluid are generalized and solutions with fast decay of nonstationary Navier-Stokes equations in the half-space are stated. Application of the Fourier-analysis to the study of the Stokes wave problem and some interesting properties of the Stokes problem are presented. The nonstationary Stokes problem is also investigated in nonconvex domains and some Lp-estimates for the first-order derivatives of solutions are obtained. New results in the theory of fully nonlinear equations are presented. Some asymptotics are derived for elliptic operators with strongly degenerated symbols. New results are also presented for variational problems connected with phase transitions of means in controllable dynamical systems, nonlocal problems for quasilinear parabolic equations, elliptic variational problems with nonstandard growth, and some sufficient conditions for the regularity of lateral boundary. Additionally, new results are presented on area formulas, estimates for eigenvalues in the case of the weighted Laplacian on Metric graph, application of the direct Lyapunov method in continuum mechanics, singular perturbation property of capillary surfaces, partially free boundary problem for parametric double integrals.


Nonlinear Dynamics

Nonlinear Dynamics

Author: H.G Solari

Publisher: Routledge

Published: 2019-01-22

Total Pages: 369

ISBN-13: 1351428306

DOWNLOAD EBOOK

Nonlinear Dynamics: A Two-Way Trip from Physics to Math provides readers with the mathematical tools of nonlinear dynamics to tackle problems in all areas of physics. The selection of topics emphasizes bifurcation theory and topological analysis of dynamical systems. The book includes real-life problems and experiments as well as exercises and work


Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Author: Denis Blackmore

Publisher: World Scientific

Published: 2011-03-04

Total Pages: 563

ISBN-13: 9814462713

DOWNLOAD EBOOK

This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.


Lectures on Navier-Stokes Equations

Lectures on Navier-Stokes Equations

Author: Tai-Peng Tsai

Publisher: American Mathematical Soc.

Published: 2018-08-09

Total Pages: 239

ISBN-13: 1470430967

DOWNLOAD EBOOK

This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental importance in mathematical fluid mechanics as well as in engineering applications. The goal is to give a rapid exposition on the existence, uniqueness, and regularity of its solutions, with a focus on the regularity problem. To fit into a one-year course for students who have already mastered the basics of PDE theory, many auxiliary results have been described with references but without proofs, and several topics were omitted. Most chapters end with a selection of problems for the reader. After an introduction and a careful study of weak, strong, and mild solutions, the reader is introduced to partial regularity. The coverage of boundary value problems, self-similar solutions, the uniform L3 class including the celebrated Escauriaza-Seregin-Šverák Theorem, and axisymmetric flows in later chapters are unique features of this book that are less explored in other texts. The book can serve as a textbook for a course, as a self-study source for people who already know some PDE theory and wish to learn more about Navier-Stokes equations, or as a reference for some of the important recent developments in the area.


Analytical Methods for Markov Semigroups

Analytical Methods for Markov Semigroups

Author: Luca Lorenzi

Publisher: CRC Press

Published: 2006-07-28

Total Pages: 559

ISBN-13: 1420011588

DOWNLOAD EBOOK

For the first time in book form, Analytical Methods for Markov Semigroups provides a comprehensive analysis on Markov semigroups both in spaces of bounded and continuous functions as well as in Lp spaces relevant to the invariant measure of the semigroup. Exploring specific techniques and results, the book collects and updates the literature associated with Markov semigroups. Divided into four parts, the book begins with the general properties of the semigroup in spaces of continuous functions: the existence of solutions to the elliptic and to the parabolic equation, uniqueness properties and counterexamples to uniqueness, and the definition and properties of the weak generator. It also examines properties of the Markov process and the connection with the uniqueness of the solutions. In the second part, the authors consider the replacement of RN with an open and unbounded domain of RN. They also discuss homogeneous Dirichlet and Neumann boundary conditions associated with the operator A. The final chapters analyze degenerate elliptic operators A and offer solutions to the problem. Using analytical methods, this book presents past and present results of Markov semigroups, making it suitable for applications in science, engineering, and economics.


Different Faces of Geometry

Different Faces of Geometry

Author: Simon Donaldson

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 424

ISBN-13: 030648658X

DOWNLOAD EBOOK

Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun.Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the 11/8 conjecture. LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even well-known 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the geometry is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra.The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems. - From the Preface by the Editors


Nonlinear Problems in Mathematical Physics and Related Topics II

Nonlinear Problems in Mathematical Physics and Related Topics II

Author: Michael Sh. Birman

Publisher: Springer

Published: 2014-01-14

Total Pages: 0

ISBN-13: 9781461507017

DOWNLOAD EBOOK

The main topics reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered in the volume is the Navier-Stokes equations. This subject is investigated in many different directions. In particular, the existence and uniqueness results are obtained for the Navier-Stokes equations in spaces of low regularity. A sufficient condition for the regularity of solutions to the evolution Navier-Stokes equations in the three-dimensional case is derived and the stabilization of a solution to the Navier-Stokes equations to the steady-state solution and the realization of stabilization by a feedback boundary control are discussed in detail. Connections between the regularity problem for the Navier-Stokes equations and a backward uniqueness problem for the heat operator are also clarified. Generalizations and modified Navier-Stokes equations modeling various physical phenomena such as the mixture of fluids and isotropic turbulence are also considered. Numerical results for the Navier-Stokes equations, as well as for the porous medium equation and the heat equation, obtained by the diffusion velocity method are illustrated by computer graphs. Some other models describing various processes in continuum mechanics are studied from the mathematical point of view. In particular, a structure theorem for divergence-free vector fields in the plane for a problem arising in a micromagnetics model is proved. The absolute continuity of the spectrum of the elasticity operator appearing in a problem for an isotropic periodic elastic medium with constant shear modulus (the Hill body) is established. Time-discretization problems for generalized Newtonian fluids are discussed, the unique solvability of the initial-value problem for the inelastic homogeneous Boltzmann equation for hard spheres, with a diffusive term representing a random background acceleration is proved and some qualitative properties of the solution are studied. An approach to mathematical statements based on the Maxwell model and illustrated by the Lavrent'ev problem on the wave formation caused by explosion welding is presented. The global existence and uniqueness of a solution to the initial boundary-value problem for the equations arising in the modelling of the tension-driven Marangoni convection and the existence of a minimal global attractor are established. The existence results, regularity properties, and pointwise estimates for solutions to the Cauchy problem for linear and nonlinear Kolmogorov-type operators arising in diffusion theory, probability, and finance, are proved. The existence of minimizers for the energy functional in the Skyrme model for the low-energy interaction of pions which describes elementary particles as spatially localized solutions of nonlinear partial differential equations is also proved. Several papers are devoted to the study of nonlinear elliptic and parabolic operators. Versions of the mean value theorems and Harnack inequalities are studied for the heat equation, and connections with the so-called growth theorems for more general second-order elliptic and parabolic equations in the divergence or nondivergence form are investigated. Additionally, qualitative properties of viscosity solutions of fully nonlinear partial differential inequalities of elliptic and degenerate elliptic type are clarified. Some uniqueness results for identification of quasilinear elliptic and parabolic equations are presented and the existence of smooth solutions of a class of Hessian equations on a compact Riemannian manifold without imposing any curvature restrictions on the manifold is established.


Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations

Author: C.M. Dafermos

Publisher: Gulf Professional Publishing

Published: 2005-11-30

Total Pages: 684

ISBN-13: 9780444520487

DOWNLOAD EBOOK

This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous, and in depth surveys on the most important aspects of the present theory.


The Navier-Stokes Problem in the 21st Century

The Navier-Stokes Problem in the 21st Century

Author: Pierre Gilles Lemarie-Rieusset

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 718

ISBN-13: 1315362732

DOWNLOAD EBOOK

Up-to-Date Coverage of the Navier–Stokes Equation from an Expert in Harmonic Analysis The complete resolution of the Navier–Stokes equation—one of the Clay Millennium Prize Problems—remains an important open challenge in partial differential equations (PDEs) research despite substantial studies on turbulence and three-dimensional fluids. The Navier–Stokes Problem in the 21st Century provides a self-contained guide to the role of harmonic analysis in the PDEs of fluid mechanics. The book focuses on incompressible deterministic Navier–Stokes equations in the case of a fluid filling the whole space. It explores the meaning of the equations, open problems, and recent progress. It includes classical results on local existence and studies criterion for regularity or uniqueness of solutions. The book also incorporates historical references to the (pre)history of the equations as well as recent references that highlight active mathematical research in the field.