Nonlinear Electromagnetic Systems

Nonlinear Electromagnetic Systems

Author: A. J. Moses

Publisher: IOS Press

Published: 1996

Total Pages: 986

ISBN-13: 9789051992519

DOWNLOAD EBOOK

The book covers classical and practical approaches to electromagnetic field solutions in magnetic devices. The following topics are addressed: Advanced computional techniques; Intelligent computer aided design; Magnetic materials; Inverse problems; Magnetic sensors and transducers; Performance and optimisation of devices; Applications to electronic systems; Modelling of non-linear systems and other related topics. This volume presents 200 of the best articles presented at the International Symposium on Non-Linear Electromagnetic Systems (ISEM in Cardiff, Wales). The previous ISEM papers were published in the successful volume Advanced Computational and Design Techniques in Applied Electromagnetic Systems (by Elsevier).Main chapters in this book are: Electromagnetic Devices: Non-linearities at contacts and interfaces in semiconductor structures by R.H. Williams as key-note. Optimisation, Inverse and Biological Studies: Power loss testing; intelligent computation of optimization of metal cutting; grid methods for CFD and CEM. Magnetic Materials: Materials for circuit semilator applications; rotational magnetostriction. Computational Techniques and Modelling: Electromagnetic device design; soft magnetic materials; engineering application of artificial intelligence. Sensors and Non-destructive Testing: Eddy current nondestructive evaluation; nonlinear magnetoresistance; micro magnetic sensor. Electronic and Electrical Applications: Non-linear transistor parameters; superconducting magnets.


Non-linear Electromagnetic Systems

Non-linear Electromagnetic Systems

Author: Paolo Di Barba

Publisher: IOS Press

Published: 2000

Total Pages: 762

ISBN-13: 9781586030247

DOWNLOAD EBOOK

This text is a collection of contributions covering a wide range of topics of interdisciplinary character, from materials to systems, from microdevices to large equipment, with special emphasis on emerging subjects and particular attention to advanced computational methods in order to model both devices and systems. The book provides the solution to challenging problems of research on non-linear electromagnetic systems and is expected to help researchers working in this broad area.


Nonlinear Electrodynamics in Biological Systems

Nonlinear Electrodynamics in Biological Systems

Author: W. Adey

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 589

ISBN-13: 146132789X

DOWNLOAD EBOOK

The past half century has seen an extraordinary growth in the fields of cellular and molecular biology. From simple morphologi cal concepts of cells as the essential units of living matter there has been an ever-sharper focus on functional organization of living systems, with emphasis on molecular dynamics. Thus, life forms have come to be defined increasingly in terms of metabolism, growth, reproduction and responses to environmental perturbations. Since these properties occur in varying degrees in systems below the level of cellular organization, there has been a blurring of older models that restricted the concepts of life to cellular systems. At the same time, a search has begun for elemental as pects of molecular and atomic behavior that might better define properties common to all life forms. This search has led to an examination of nonlinear behavior in biological macromolecules, whether in response to electrical or chemical stimulation, for example, or as a means of signaling along a molecular chain, or as a means of energy transfer. Experimental knowledge in this area has grown rapidly in the past decade, and in some respects has outstripped theoretical models adequate to ex plain these new observations. Nevertheless, it can be claimed that there is now an impressive body of experiments implicating non linear, nonequilibrium processes as fundamental steps in sequential operations of biological systems.


Non-linear Electromagnetic Systems

Non-linear Electromagnetic Systems

Author: Volkmar Kose

Publisher: IOS Press

Published: 1998

Total Pages: 926

ISBN-13: 9789051993813

DOWNLOAD EBOOK

The contents is dominated by the latest problems of applied electrical engineering, micro electromechanics, biosensor technology and biomagnetism. The book covers the numerical calculation methods for the design and optimization of sensors, actuators and electric machines, as well as the treatment of inverse problems, in materials testing and in the field of medicine in particular. Other central topics are the material properties and their simulation and much consideration is given to micro-electromechanics.


Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices

Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices

Author: M G Cottam

Publisher: World Scientific

Published: 1994-03-28

Total Pages: 475

ISBN-13: 981450548X

DOWNLOAD EBOOK

In the past few years, there has been a rapidly growing interest in the properties of spin waves (or magnons) in ordered magnetic materials. These are the low-lying excitations that characterize the dynamical behavior of the magnetization variables in ferromagnets, ferrimagnets and antiferromagnets, particularly at low temperatures. Many of the recent developments concerning spin waves have been directed towards understanding their behavior in limited magnetic samples. At the same time, there have been dramatic advances in the experimental techniques, both for preparing high-quality magnetic samples in the form of thin films and superlattices and for the study of the spin-wave excitations themselves. Magnetic thin films have long been of technological as well as scientific interest and an understanding of both the linear and nonlinear aspects of their magnetic behavior is important.


Self-Organized Biological Dynamics and Nonlinear Control

Self-Organized Biological Dynamics and Nonlinear Control

Author: Jan Walleczek

Publisher: Cambridge University Press

Published: 2006-04-20

Total Pages: 444

ISBN-13: 1139427598

DOWNLOAD EBOOK

The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.


Nonlinear Periodic Waves and Their Modulations

Nonlinear Periodic Waves and Their Modulations

Author: Anatoli? Mikha?lovich Kamchatnov

Publisher: World Scientific

Published: 2000

Total Pages: 399

ISBN-13: 981024407X

DOWNLOAD EBOOK

Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.


Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems

Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems

Author: Alper Demir

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 278

ISBN-13: 1461560632

DOWNLOAD EBOOK

In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS • Mathematical representations or models for the noise sources. • Mathematical model or representation for the system that is under the in fluence of the noise sources.


Nonlinear Dynamics

Nonlinear Dynamics

Author: Muthusamy Lakshmanan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 628

ISBN-13: 3642556884

DOWNLOAD EBOOK

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.


Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Author: Sergey N. Makarov

Publisher: John Wiley & Sons

Published: 2015-05-13

Total Pages: 616

ISBN-13: 1119052467

DOWNLOAD EBOOK

Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output. Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB® and major commercial FEM/BEM electromagnetic software simulators. This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules. Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.