Nanoscale Energy Transport and Harvesting

Nanoscale Energy Transport and Harvesting

Author: Zhang Gang

Publisher: CRC Press

Published: 2015-02-04

Total Pages: 222

ISBN-13: 9814463035

DOWNLOAD EBOOK

Energy transport and conversion in nanoscale structures is a rapidly expanding area of science. It looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. Owing to the difficulty in experimental measurement, computational simulation has becom


Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting

Author: Alper Erturk

Publisher: John Wiley & Sons

Published: 2011-04-04

Total Pages: 377

ISBN-13: 1119991358

DOWNLOAD EBOOK

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.


Nanoscale Energy Transport and Conversion

Nanoscale Energy Transport and Conversion

Author: Gang Chen

Publisher: Oxford University Press

Published: 2005-03-03

Total Pages: 570

ISBN-13: 9780199774685

DOWNLOAD EBOOK

This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.


Nanomaterials for Sustainable Energy

Nanomaterials for Sustainable Energy

Author: Quan Li

Publisher: Springer

Published: 2016-05-12

Total Pages: 602

ISBN-13: 3319320238

DOWNLOAD EBOOK

This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors is covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications are compiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.


Micro Energy Harvesting

Micro Energy Harvesting

Author: Danick Briand

Publisher: John Wiley & Sons

Published: 2015-04-21

Total Pages: 490

ISBN-13: 3527672931

DOWNLOAD EBOOK

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.


Applied Thermal Measurements At The Nanoscale: A Beginner's Guide To Electrothermal Methods

Applied Thermal Measurements At The Nanoscale: A Beginner's Guide To Electrothermal Methods

Author: Zhen Chen

Publisher: World Scientific

Published: 2018-07-13

Total Pages: 161

ISBN-13: 9813271124

DOWNLOAD EBOOK

This book aims to serve as a practical guide for novices to design and conduct measurements of thermal properties at the nanoscale using electrothermal techniques. An outgrowth of the authors’ tutorials for new graduate students in their own labs, it includes practical details on measurement design and selection, sensitivity and uncertainty analysis, and pitfalls and verifications. The information is particularly helpful for someone setting up their own experiment for the first time. The book emphasizes the integration of thermal analysis with practical experimental considerations, in order to design an experiment for best sensitivity and to configure the laboratory instruments accordingly. The focus is on the measurements of thermal conductivity, though thermal diffusivity and thermal boundary resistance (thermal contact resistance) are also briefly covered, and many of the principles can be generalized to other challenging thermal measurements.The reader is only expected to have the basic familiarity with electrical instruments typical of a university graduate in science or engineering, and an acquaintance with the elementary laws of heat transfer by conduction, convection, and radiation.


Nanoscale Thermoelectrics

Nanoscale Thermoelectrics

Author: Xiaodong Wang

Publisher: Springer Science & Business Media

Published: 2013-11-18

Total Pages: 520

ISBN-13: 3319020129

DOWNLOAD EBOOK

For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.


Quantum Hybrid Electronics and Materials

Quantum Hybrid Electronics and Materials

Author: Yoshiro Hirayama

Publisher: Springer Nature

Published: 2022-05-03

Total Pages: 347

ISBN-13: 9811912017

DOWNLOAD EBOOK

This book highlights recent advances in quantum control technologies with regard to hybrid quantum systems. It addresses the following topics: phonon engineering based on phononic crystals, carbon-based nano materials like graphene and nanotubes, Terahertz light technology for single-molecule and quantum dots, nuclear-spin-based metrology for semiconductor quantum systems, quantum anomalous Hall effect in magnetic topological insulators, chiral three-dimensional photonic crystals, and bio-inspired magnonic systems. Each topic, as a component in the framework of hybrid quantum systems, is concisely presented by experts at the forefront of the field. Accordingly, the book offers a valuable asset, and will help readers find advanced technologies and materials suitable for their purposes.


Triboelectric Nanogenerators

Triboelectric Nanogenerators

Author: Zhong Lin Wang

Publisher: Springer

Published: 2016-08-17

Total Pages: 537

ISBN-13: 3319400398

DOWNLOAD EBOOK

This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.


21st Century Nanoscience – A Handbook

21st Century Nanoscience – A Handbook

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2020-04-02

Total Pages: 489

ISBN-13: 1000699390

DOWNLOAD EBOOK

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.