Handbook of Neuroengineering

Handbook of Neuroengineering

Author: Nitish V. Thakor

Publisher: Springer Nature

Published: 2023-02-02

Total Pages: 3686

ISBN-13: 9811655405

DOWNLOAD EBOOK

This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​


Neural Engineering

Neural Engineering

Author: Bin He

Publisher: Springer Science & Business Media

Published: 2013-01-09

Total Pages: 801

ISBN-13: 1461452279

DOWNLOAD EBOOK

Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.


Brain-Computer Interfaces

Brain-Computer Interfaces

Author: Jonathan Wolpaw

Publisher: Oxford University Press

Published: 2012-01-24

Total Pages: 419

ISBN-13: 0199921482

DOWNLOAD EBOOK

A recognizable surge in the field of Brain Computer Interface (BCI) research and development has emerged in the past two decades. This book is intended to provide an introduction to and summary of essentially all major aspects of BCI research and development. Its goal is to be a comprehensive, balanced, and coordinated presentation of the field's key principles, current practice, and future prospects.


Low-power Wearable Healthcare Sensors

Low-power Wearable Healthcare Sensors

Author: R. Simon Sherratt

Publisher: MDPI

Published: 2020-12-29

Total Pages: 146

ISBN-13: 3039364790

DOWNLOAD EBOOK

Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors.


Electrical Nerve Stimulation

Electrical Nerve Stimulation

Author: Frank Rattay

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 266

ISBN-13: 3709132711

DOWNLOAD EBOOK

Functional electrical stimulation is the most important application in the field of clinical treatment with currents or magnetism. This technique artificially generates neural activity in order to overcome lost functions of the paralized, incontinent or sensory handicapped patient. Electricity and magnetism is also used in many cases, e.g., to stimulate bone growth or wound healing. Nevertheless, the basic mechanism of the artificial excitation of nerve and muscle fibers has become known only in the last few years. Although many textbooks are concerned with the natural excitation process there is a lack of information on the influence of an applied electrical or magnetic field. This book, written for students and biomedical engineers, should close the gap and, furthermore, it should stimulate the design of new instrumentation using optimal strategies.


VLSI Circuits for Biomedical Applications

VLSI Circuits for Biomedical Applications

Author: Krzysztof Iniewski

Publisher: Artech House

Published: 2008

Total Pages: 453

ISBN-13: 1596933186

DOWNLOAD EBOOK

Supported with over 280 illustrations and over 160 equations, the book offers cutting-edge guidance on designing integrated circuits for wireless biosensing, body implants, biosensing interfaces, and molecular biology. You discover innovative design techniques and novel materials to help you achieve higher levels circuit and system performance.


The NeuroProcessor

The NeuroProcessor

Author: Yevgeny Perelman

Publisher: Springer Science & Business Media

Published: 2008-08-20

Total Pages: 126

ISBN-13: 1402087268

DOWNLOAD EBOOK

Understanding brain structure and principles of operation is one of the major challengesofmodernscience.SincetheexperimentsbyGalvanionfrogmuscle contraction in 1792, it is known that electrical impulses lie at the core of the brain activity. The technology of neuro-electronic interfacing, besides its importance for neurophysiological research, has also clinical potential, so called neuropr- thetics. Sensory prostheses are intended to feed sensory data into patient’s brain by means of neurostimulation. Cochlear prostheses [1] are one example of sensory prostheses that are already used in patients. Retinal prostheses are currently under research [2]. Recent neurophysiological experiments [3, 4] show that brain signals recorded from motor cortex carry information regarding the movement of subject’s limbs (Fig. 1.1). These signals can be further used to control ext- nal machines [4] that will replace missing limbs, opening the ?eld of motor prosthetics, devices that will restore lost limbs or limb control. Fig. 1.1. Robotic arm controlled by monkey motor cortex signals. MotorLab, U- versity of Pittsburgh. Prof Andy Schwartz, U. Pitt 2 1 Introduction Another group of prostheses would provide treatment for brain diseases, such as prevention of epileptic seizure or the control of tremor associated with Parkinson disease [5]. Brain implants for treatment of Epilepsy and Parkinson symptoms (Fig. 1.2) are already available commercially [6, 7]. Fig. 1.2. Implantable device for Epilepsy seizures treatment [7]. Cyberonics, Inc.