Machine Learning for Data Science Handbook

Machine Learning for Data Science Handbook

Author: Lior Rokach

Publisher: Springer Nature

Published: 2023-08-17

Total Pages: 975

ISBN-13: 3031246284

DOWNLOAD EBOOK

This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.


Python Data Science Handbook

Python Data Science Handbook

Author: Jake VanderPlas

Publisher: "O'Reilly Media, Inc."

Published: 2016-11-21

Total Pages: 609

ISBN-13: 1491912138

DOWNLOAD EBOOK

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms


Content-Addressable Memories

Content-Addressable Memories

Author: T. Kohonen

Publisher: Springer

Published: 2012-03

Total Pages: 0

ISBN-13: 9783642965548

DOWNLOAD EBOOK

Designers and users of computer systems have long been aware of the fact that inclusion of some kind of content-addressable or "associative" functions in the storage and retrieval mechanisms would allow a more effective and straightforward organization of data than with the usual addressed memories, with the result that the computing power would be significantly increased. However, although the basic principles of content-addressing have been known for over twenty years, the hardware content-addressable memories (CAMs) have found their way only to special roles such as small buffer memories and con trol units. This situation now seems to be changing: Because of the develop ment of new technologies such as very-large-scale integration of semiconduc tor circuits, charge-coupled devices, magnetic-bubble memories, and certain devices based on quantum-mechanical effects, an increasing amount of active searching functions can be transferred to memory units. The prices of the more complex memory components which earlier were too high to allow the application of these principles to mass memories will be reduced to a fraction of the to tal system costs, and this will certainly have a significant impact on the new computer architectures. In order to advance the new memory principles and technologies, more in formation ought to be made accessible to a common user.


Python for Data Analysis

Python for Data Analysis

Author: Wes McKinney

Publisher: "O'Reilly Media, Inc."

Published: 2017-09-25

Total Pages: 553

ISBN-13: 1491957611

DOWNLOAD EBOOK

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples


The Data Science Handbook

The Data Science Handbook

Author: Field Cady

Publisher: John Wiley & Sons

Published: 2017-02-28

Total Pages: 420

ISBN-13: 1119092949

DOWNLOAD EBOOK

A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.


Data Science and Machine Learning

Data Science and Machine Learning

Author: Dirk P. Kroese

Publisher: CRC Press

Published: 2019-11-20

Total Pages: 538

ISBN-13: 1000730778

DOWNLOAD EBOOK

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code


Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry

Author: Chkoniya, Valentina

Publisher: IGI Global

Published: 2021-06-25

Total Pages: 653

ISBN-13: 1799869865

DOWNLOAD EBOOK

The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.


Introducing Data Science

Introducing Data Science

Author: Davy Cielen

Publisher: Simon and Schuster

Published: 2016-05-02

Total Pages: 475

ISBN-13: 1638352496

DOWNLOAD EBOOK

Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user


Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

Author: Rani, Geeta

Publisher: IGI Global

Published: 2020-10-16

Total Pages: 586

ISBN-13: 1799827437

DOWNLOAD EBOOK

By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.