An informed look at the myths and fears surrounding nuclear energy, and a practical, politically realistic solution to global warming and our energy needs. Faced by the world's oil shortages and curious about alternative energy sources, Gwyneth Cravens skeptically sets out to find the truth about nuclear energy. Her conclusion: it is a totally viable and practical solution to global warming. In the end, we see that if we are to care for subsequent generations, embracing nuclear energy is an ethical imperative.
Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear plants whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since.
Written by leading international contributors, this book examines the ethical issues concerning nuclear energy technology and waste disposal. Discussing topics such as risk, safety, security, justice and democracy, it is relevant to a broad range of readers including scholars of environmental philosophy, ethics, energy policy studies and the social sciences.
Originally perceived as a cheap and plentiful source of power, the commercial use of nuclear energy has been controversial for decades. Worries about the dangers that nuclear plants and their radioactive waste posed to nearby communities grew over time, and plant construction in the United States virtually died after the early 1980s. The 1986 disaster at Chernobyl only reinforced nuclear power's negative image. Yet in the decade prior to the Japanese nuclear crisis of 2011, sentiment about nuclear power underwent a marked change. The alarming acceleration of global warming due to the burning of fossil fuels and concern about dependence on foreign fuel has led policymakers, climate scientists, and energy experts to look once again at nuclear power as a source of energy. In this accessible overview, Charles D. Ferguson provides an authoritative account of the key facts about nuclear energy. What is the origin of nuclear energy? What countries use commercial nuclear power, and how much electricity do they obtain from it? How can future nuclear power plants be made safer? What can countries do to protect their nuclear facilities from military attacks? How hazardous is radioactive waste? Is nuclear energy a renewable energy source? Featuring a discussion of the recent nuclear crisis in Japan and its ramifications, Ferguson addresses these questions and more in Nuclear Energy: What Everyone Needs to Know®, a book that is essential for anyone looking to learn more about this important issue. What Everyone Needs to Know® is a registered trademark of Oxford University Press.
Heavy water (deuterium oxide) played a sinister role in the race for nuclear energy during the World War II. It was a key factor in Germany's bid to harness atomic energy primarily as a source of electric power; its acute shortage was a factor in Japan's decision not to pursue seriously nuclear weaponry; its very existence was a nagging thorn in the side of the Allied powers. Books and films have dwelt on the Allies' efforts to deny the Germans heavy water by military means; however, a history of heavy water has yet to be written. Filling this gap, Heavy Water and the Wartime Race for Nuclear Energy concentrates on the circumstances whereby Norway became the preeminent producer of heavy water and on the scientific role the rare isotope of hydrogen played in the wartime efforts by the Axis and Allied powers alike. Instead of a purely technical treatise on heavy water, the book describes the social history of the subject. The book covers the discovery and early uses of deuterium before World War II and its large-scale production by Norsk Hydro in Norway, especially under German control. It also discusses the French-German race for the Norwegian heavy-water stocks in 1940 and heavy water's importance for the subsequent German uranium project, including the Allied sabotage and bombing of the Norwegian plants, as well as its lesser role in Allied projects, especially in the United States and Canada. The book concludes with an overall assessment of the importance and the perceived importance of heavy water for the German program, which alone staked everything on heavy water in its quest for a nuclear chain reaction.
This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, radiation, and reactors, along with a discussion of wastes and weapons. A minimum of mathematical background is required, but there is ample opportunity to learn characteristic numbers through the illustrative calculations and the exercises. An updated Solution Manual is available to the instructor. A new feature to aid the student is a set of some 50 Computer Exercises, using a diskette of personal computer programs in BASIC and spreadsheet, supplied by the author at a nominal cost. The book is of principal value as an introduction to nuclear science and technology for early college students, but can be of benefit to science teachers and lecturers, nuclear utility trainees and engineers in other fields.
Rising fossil fuel prices and concerns about greenhouse gas emissions are fostering a nuclear power renaissance and a revitalized uranium mining industry across the American West. In The Price of Nuclear Power, environmental sociologist Stephanie Malin offers an on-the-ground portrait of several uranium communities caught between the harmful legacy of previous mining booms and the potential promise of new economic development. Using this context, she examines how shifting notions of environmental justice inspire divergent views about nuclear power’s sustainability and equally divisive forms of social activism. Drawing on extensive fieldwork conducted in rural isolated towns such as Monticello, Utah, and Nucla and Naturita, Colorado, as well as in upscale communities like Telluride, Colorado, and incorporating interviews with community leaders, environmental activists, radiation regulators, and mining executives, Malin uncovers a fundamental paradox of the nuclear renaissance: the communities most hurt by uranium’s legacy—such as high rates of cancers, respiratory ailments, and reproductive disorders—were actually quick to support industry renewal. She shows that many impoverished communities support mining not only because of the employment opportunities, but also out of a personal identification with uranium, a sense of patriotism, and new notions of environmentalism. But other communities, such as Telluride, have become sites of resistance, skeptical of industry and government promises of safe mining, fearing that regulatory enforcement won’t be strong enough. Indeed, Malin shows that the nuclear renaissance has exacerbated social divisions across the Colorado Plateau, threatening social cohesion. Malin further illustrates ways in which renewed uranium production is not a socially sustainable form of energy development for rural communities, as it is utterly dependent on unstable global markets. The Price of Nuclear Power is an insightful portrait of the local impact of the nuclear renaissance and the social and environmental tensions inherent in the rebirth of uranium mining.
Have you ever wondered how a nuclear power station works? This lively book will answer that question. It’ll take you on a journey from the science behind nuclear reactors, through their start-up, operation and shutdown. Along the way it covers a bit of the engineering, reactor history, different kinds of reactors and what can go wrong with them. Much of this is seen from the viewpoint of a trainee operator on a Pressurised Water Reactor - the most common type of nuclear reactor in the world. Colin Tucker has spent the last thirty years keeping reactors safe. Join him on a tour that is the next best thing to driving a nuclear reactor yourself!
Nuclear Engineering: A Conceptual Introduction to Nuclear Power provides coverage of the introductory, salient principles of nuclear engineering in a comprehensive manner for those entering the profession at the end of their degree. The nuclear power industry is undergoing a renaissance because of the desire for low-carbon baseload electricity, the growing population, and environmental concerns about shale gas, so this book is a welcomed addition to the science. In addition, users will find a great deal of information on the change in the industry, along with other topical areas of interest that are uniquely covered. Intended for undergraduate students or early postgraduate students studying nuclear engineering, this new text will also be appealing to scientifically-literate non-experts wishing to be better informed about the 'nuclear option'. - Presents a succinct and clear explanation of the key facts and concepts on how nuclear engineering power systems function and how their related fuel supply cycles operate - Provides full coverage of the nuclear fuel cycle, including its scientific and historical basis - Describes a comprehensive range of relevant reactor designs, from those that are defunct, current, and in plan/construction for the future, including SMRs and GenIV - Summarizes all major accidents and their impact on the industry and society