Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the general theory to partial algebras. The last chapter contains exercises and open problems with suggestions for future work in this area of research. Graduate students and mathematical researchers will find Hyperidentities and Clones a thought-provoking and illuminating text that offers a unique opportunity to study the topic in one source.
Hyperidentities are important formulae of second-order logic, and research in hyperidentities paves way for the study of second-order logic and second-order model theory.This book illustrates many important current trends and perspectives for the field of hyperidentities and their applications, of interest to researchers in modern algebra and discrete mathematics. It covers a number of directions, including the characterizations of the Boolean algebra of n-ary Boolean functions and the distributive lattice of n-ary monotone Boolean functions; the classification of hyperidentities of the variety of lattices, the variety of distributive (modular) lattices, the variety of Boolean algebras, and the variety of De Morgan algebras; the characterization of algebras with aforementioned hyperidentities; the functional representations of finitely-generated free algebras of various varieties of lattices and bilattices via generalized Boolean functions (De Morgan functions, quasi-De Morgan functions, super-Boolean functions, super-De Morgan functions, etc); the structural results for De Morgan algebras, Boole-De Morgan algebras, super-Boolean algebras, bilattices, among others.While problems of Boolean functions theory are well known, the present book offers alternative, more general problems, involving the concepts of De Morgan functions, quasi-De Morgan functions, super-Boolean functions, and super-De Morgan functions, etc. In contrast to other generalized Boolean functions discovered and investigated so far, these functions have clearly normal forms. This quality is of crucial importance for their applications in pure and applied mathematics, especially in discrete mathematics, quantum computation, quantum information theory, quantum logic, and the theory of quantum computers.
In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institute "Algebras and Orders" as its 30th Seminaire de mathematiques superieures (SMS), a summer school with a long tradition and well-established reputation. This book contains the contributions of the invited speakers. Universal algebra- which established itself only in the 1930's- grew from traditional algebra (e.g., groups, modules, rings and lattices) and logic (e.g., propositional calculus, model theory and the theory of relations). It started by extending results from these fields but by now it is a well-established and dynamic discipline in its own right. One of the objectives of the ASI was to cover a broad spectrum of topics in this field, and to put in evidence the natural links to, and interactions with, boolean algebra, lattice theory, topology, graphs, relations, automata, theoretical computer science and (partial) orders. The theory of orders is a relatively young and vigorous discipline sharing certain topics as well as many researchers and meetings with universal algebra and lattice theory. W. Taylor surveyed the abstract clone theory which formalizes the process of compos ing operations (i.e., the formation of term operations) of an algebra as a special category with countably many objects, and leading naturally to the interpretation and equivalence of varieties.
Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the
This volume is a compilation of lectures on algebras and combinatorics presented at the Second International Congress in Algebra and Combinatorics. It reports on not only new results, but also on open problems in the field. The proceedings volume is useful for graduate students and researchers in algebras and combinatorics. Contributors include eminent figures such as V Artamanov, L Bokut, J Fountain, P Hilton, M Jambu, P Kolesnikov, Li Wei and K Ueno.
This volume is a compilation of lectures on algebras and combinatorics presented at the Second International Congress in Algebra and Combinatorics. It reports on not only new results, but also on open problems in the field. The proceedings volume is useful for graduate students and researchers in algebras and combinatorics. Contributors include eminent figures such as V Artamanov, L Bokut, J Fountain, P Hilton, M Jambu, P Kolesnikov, Li Wei and K Ueno.
The purpose of this book is to study the structures needed to model objects in universal algebra, universal coalgebra and theoretical computer science. Universal algebra is used to describe different kinds of algebraic structures, while coalgebras are used to model state-based machines in computer science.The connection between algebras and coalgebras provides a way to connect static data-oriented systems with dynamical behavior-oriented systems. Algebras are used to describe data types and coalgebras describe abstract systems or machines.The book presents a clear overview of the area, from which further study may proceed.
This book contains contributions by leading experts which cover an extensive range of topics in semigroups theory. Some of the articles exhibit the strong links with theoretical computer science. Several survey articles summarize the salient features of special fields of the theory of particular interest in the contemporary research. Special care has been taken in the presentation of the papers, making them accessible to a large audience.
Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.