Graph Theory and Its Applications, Second Edition

Graph Theory and Its Applications, Second Edition

Author: Jonathan L. Gross

Publisher: CRC Press

Published: 2005-09-22

Total Pages: 799

ISBN-13: 158488505X

DOWNLOAD EBOOK

Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.


Handbook of Graph Theory

Handbook of Graph Theory

Author: Jonathan L. Gross

Publisher: CRC Press

Published: 2003-12-29

Total Pages: 1200

ISBN-13: 9780203490204

DOWNLOAD EBOOK

The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approach


Graph Theory As I Have Known It

Graph Theory As I Have Known It

Author: W. T. Tutte

Publisher: Clarendon Press

Published: 2012-05-24

Total Pages: 164

ISBN-13: 0191637785

DOWNLOAD EBOOK

This book provides a unique and unusual introduction to graph theory by one of the founding fathers, and will be of interest to all researchers in the subject. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experience in the area, and provides a fascinating insight into how he was led to his theorems and the proofs he used. As well as being of historical interest it provides a useful starting point for research, with references to further suggested books as well as the original papers. The book starts by detailing the first problems worked on by Professor Tutte and his colleagues during his days as an undergraduate member of the Trinity Mathematical Society in Cambridge. It covers subjects such as comnbinatorial problems in chess, the algebraicization of graph theory, reconstruction of graphs, and the chromatic eigenvalues. In each case fascinating historical and biographical information about the author's research is provided.


Graph Theory and Its Applications to Problems of Society

Graph Theory and Its Applications to Problems of Society

Author: Fred S. Roberts

Publisher: SIAM

Published: 1978-01-01

Total Pages: 123

ISBN-13: 089871026X

DOWNLOAD EBOOK

Explores modern topics in graph theory and its applications to problems in transportation, genetics, pollution, perturbed ecosystems, urban services, and social inequalities. The author presents both traditional and relatively atypical graph-theoretical topics to best illustrate applications.


Graph Theory Applications

Graph Theory Applications

Author: L.R. Foulds

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 389

ISBN-13: 1461209331

DOWNLOAD EBOOK

The first part of this text covers the main graph theoretic topics: connectivity, trees, traversability, planarity, colouring, covering, matching, digraphs, networks, matrices of a graph, graph theoretic algorithms, and matroids. These concepts are then applied in the second part to problems in engineering, operations research, and science as well as to an interesting set of miscellaneous problems, thus illustrating their broad applicability. Every effort has been made to present applications that use not merely the notation and terminology of graph theory, but also its actual mathematical results. Some of the applications, such as in molecular evolution, facilities layout, and graffic network design, have never appeared before in book form. Written at an advanced undergraduate to beginning graduate level, this book is suitable for students of mathematics, engineering, operations research, computer science, and physical sciences as well as for researchers and practitioners with an interest in graph theoretic modelling.


Introduction to Graph Theory

Introduction to Graph Theory

Author: Richard J. Trudeau

Publisher: Courier Corporation

Published: 2013-04-15

Total Pages: 242

ISBN-13: 0486318664

DOWNLOAD EBOOK

Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.


Graph Structure and Monadic Second-Order Logic

Graph Structure and Monadic Second-Order Logic

Author: Bruno Courcelle

Publisher: Cambridge University Press

Published: 2012-06-14

Total Pages: 743

ISBN-13: 1139644009

DOWNLOAD EBOOK

The study of graph structure has advanced in recent years with great strides: finite graphs can be described algebraically, enabling them to be constructed out of more basic elements. Separately the properties of graphs can be studied in a logical language called monadic second-order logic. In this book, these two features of graph structure are brought together for the first time in a presentation that unifies and synthesizes research over the last 25 years. The authors not only provide a thorough description of the theory, but also detail its applications, on the one hand to the construction of graph algorithms, and, on the other to the extension of formal language theory to finite graphs. Consequently the book will be of interest to graduate students and researchers in graph theory, finite model theory, formal language theory, and complexity theory.


Combinatorics and Graph Theory

Combinatorics and Graph Theory

Author: John Harris

Publisher: Springer Science & Business Media

Published: 2009-04-03

Total Pages: 392

ISBN-13: 0387797114

DOWNLOAD EBOOK

These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.


Introduction to Combinatorics

Introduction to Combinatorics

Author: Walter D. Wallis

Publisher: CRC Press

Published: 2016-12-12

Total Pages: 424

ISBN-13: 1498777635

DOWNLOAD EBOOK

What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM