Discusses advances in cancer research and shows how research into the causes of cancer have led to a greater understanding of the normal biological functioning of cells
It has been recognized for almost 200 years that certain families seem to inherit cancer. It is only in the past decade, however, that molecular genetics and epidemiology have combined to define the role of inheritance in cancer more clearly, and to identify some of the genes involved. The causative genes can be tracked through cancer-prone families via genetic linkage and positional cloning. Several of the genes discovered have subsequently been proved to play critical roles in normal growth and development. There are also implications for the families themselves in terms of genetic testing with its attendant dilemmas, if it is not clear that useful action will result. The chapters in The Genetics of Cancer illustrate what has already been achieved and take a critical look at the future directions of this research and its potential clinical applications.
Incorporating the most important advances in the fast-growing field of cancer biology, the text maintains all of its hallmark features. It is admired by students, instructors, researchers, and clinicians around the world for its clear writing, extensive full-color art program, and numerous pedagogical features.
This is the second edition of a widely used textbook that consolidates the basic concepts of the cancer gene theory and provides a framework for understanding the genetic basis of cancer. Particular attention is devoted to the origins of the mutations that cause cancer, and the application of evolutionary theory to explain how the cell clones that harbor cancer genes tend to expand. Focused on the altered genes and pathways that cause the growth of the most common tumors, Principles of Cancer Genetics is aimed at advanced undergraduates who have completed introductory coursework in genetics, biology and biochemistry, medical students and medical house staff. For students with a general interest in cancer, this book provides a highly accessible and readable overview. For more advanced students contemplating future study in the field of oncology and cancer research, this concise book will be useful as a primer.
Demonstrating how the malfunction of normal molecular pathways and components can lead to cancer, this text explores how our understanding of these defective mechanisms can be harnessed to develop new targeted therapeutic agents.
Ecology and Evolution of Cancer is a timely work outlining ideas that not only represent a substantial and original contribution to the fields of evolution, ecology, and cancer, but also goes beyond by connecting the interfaces of these disciplines. This work engages the expertise of a multidisciplinary research team to collate and review the latest knowledge and developments in this exciting research field. The evolutionary perspective of cancer has gained significant international recognition and interest, which is fully understandable given that somatic cellular selection and evolution are elegant explanations for carcinogenesis. Cancer is now generally accepted to be an evolutionary and ecological process with complex interactions between tumor cells and their environment sharing many similarities with organismal evolution. As a critical contribution to this field of research the book is important and relevant for the applications of evolutionary biology to understand the origin of cancers, to control neoplastic progression, and to prevent therapeutic failures. - Covers all aspects of the evolution of cancer, appealing to researchers seeking to understand its origins and effects of treatments on its progression, as well as to lecturers in evolutionary medicine - Functions as both an introduction to cancer and evolution and a review of the current research on this burgeoning, exciting field, presented by an international group of leading editors and contributors - Improves understanding of the origin and the evolution of cancer, aiding efforts to determine how this disease interferes with biotic interactions that govern ecosystems - Highlights research that intends to apply evolutionary principles to help predict emergence and metastatic progression with the aim of improving therapies
The study of the biology of tumours has grown to become markedly interdisciplinary, involving chemists, statisticians, epidemiologists, mathematicians, bioinformaticians, and computer scientists alongside biologists, geneticists, and clinicians. The Oxford Textbook of Cancer Biology brings together the most up-to-date developments from different branches of research into one coherent volume, providing a comprehensive and current account of this rapidly evolving field. Structured in eight sections, the book starts with a review of the development and biology of multi-cellular organisms, how they maintain a healthy homeostasis in an individual, and a description of the molecular basis of cancer development. The book then illustrates, as once cells become neoplastic, their signalling network is altered and pathological behaviour follows. It explores the changes that cancer cells can induce in nearby normal tissue, the new relationship established between them and the stroma, and the interaction between the immune system and tumour growth. The authors illustrate the contribution provided by high throughput techniques to map cancer at different levels, from genomic sequencing to cellular metabolic functions, and how information technology, with its vast amounts of data, is integrated with traditional cell biology to provide a global view of the disease. The effect of the different types of treatments on the biology of the neoplastic cells are explored to understand on the one side, why some treatments succeed, and on the other, how they can affect the biology of resistant and recurrent disease. The book concludes by summarizing what we know to date about cancer, and in what direction our understanding of cancer is moving. Edited by leading authorities in the field with an international team of contributors, this book is an essential resource for scholars and professionals working in the wide variety of sub-disciplines that make up today's cancer research and treatment community. It is written not only for consultation, but also for easy cover-to-cover reading.
A concise overview of the fundamental concepts of cancer biology, ideal for those with little or no background in the field. From cancer epidemiology and the underlying mechanisms, through to tumour detection and treatment, the comprehensive picture revealed will enable students to move into the cancer field with confidence.
In this book, the author Joseph G. Sinkovics liberally shares his views on the cancer cell which he has been observing in vivo and in vitro, over a life time. Readers will learn how, as an inherent faculty of the RNA/DNA complex, the primordial cell survival pathways are endogenously reactivated in an amplified or constitutive manner in the multicellular host, and are either masquerading as self-elements or as placentas, to which the multicellular host is evolutionarily trained to extend full support. The host obliges. The author explains that there is no such evidence that “malignantly transformed” human cells survive in nature. However, when cared for in the laboratory, these cells live and replicate as immortalized cultures. These cells retain their vitality upon storage in liquid nitrogen. One can only imagine an astrophysical environment in which such cells could survive; perhaps, first their seemingly humble exosomes would populate that environment. Immortal cell populations so created may survive as individuals, or may even re-organize themselves into multicellular colonies, as representatives of life for the duration of the Universe. This thought-provoking book is the work of a disciplined investigator and clinician with an impeccable reputation, and he enters a territory that very few if any before him have approached from the same angles. It will appeal to researchers with an interest in cell survival pathways and those researching cancer cells.