Foundations of Three-Dimensional Euclidean Geometry

Foundations of Three-Dimensional Euclidean Geometry

Author: I. Vaisman

Publisher: CRC Press

Published: 1980-08-01

Total Pages: 300

ISBN-13: 9780824769017

DOWNLOAD EBOOK

Foundations of Three-Dimensional Euclidean Geometry provides a modern axiomatic construction of three-dimensional geometry, in an accessible form. The method of this book is a graduated formulation of axioms, such that, by determining all the geometric spaces which satisfy the considered axioms, one may characterize the Euclidean space up to an isomorphism. A special feature of Foundations of Three-Dimensional Euclidean Geometry is the introduction of the parallel axiom at an early stage of the discussion, so that the reader can see what results may be obtained both with and without this important axiom. The many theorems, drawings, exercises, and problems richly enhance the presentation of material. Foundations of Three-Dimensional Euclidean Geometry is suitable as a textbook for a one- or two-semester course on geometry or foundations of geometry for undergraduate and beginning graduate students. Mathematics majors in M.A.T. programs will find that this exposition of a classical subject will contribute greatly to their ability to teach geometry at all levels; and logicians, philosophers, and engineers will benefit from this book's applications to their own interests. Book jacket.


Foundations of Three-Dimensional Euclidean Geometry

Foundations of Three-Dimensional Euclidean Geometry

Author: Izu Vaisman

Publisher: CRC Press

Published: 2020-11-25

Total Pages: 287

ISBN-13: 1000110494

DOWNLOAD EBOOK

This book presents to the reader a modern axiomatic construction of three-dimensional Euclidean geometry in a rigorous and accessible form. It is helpful for high school teachers who are interested in the modernization of the teaching of geometry.


Foundations of Geometry

Foundations of Geometry

Author: C. R. Wylie

Publisher: Courier Corporation

Published: 2009-05-21

Total Pages: 352

ISBN-13: 0486472140

DOWNLOAD EBOOK

Explains geometric theories and shows many examples.


The Foundations of Geometry and the Non-Euclidean Plane

The Foundations of Geometry and the Non-Euclidean Plane

Author: G.E. Martin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 525

ISBN-13: 1461257255

DOWNLOAD EBOOK

This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.


The Foundations of Geometry

The Foundations of Geometry

Author: David Hilbert

Publisher: Read Books Ltd

Published: 2015-05-06

Total Pages: 139

ISBN-13: 1473395941

DOWNLOAD EBOOK

This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.


Foundations of Geometry

Foundations of Geometry

Author: Karol Borsuk

Publisher: Courier Dover Publications

Published: 2018-11-14

Total Pages: 465

ISBN-13: 0486828093

DOWNLOAD EBOOK

In Part One of this comprehensive and frequently cited treatment, the authors develop Euclidean and Bolyai-Lobachevskian geometry on the basis of an axiom system due, in principle, to the work of David Hilbert. Part Two develops projective geometry in much the same way. An Introduction provides background on topological space, analytic geometry, and other relevant topics, and rigorous proofs appear throughout the text. Topics covered by Part One include axioms of incidence and order, axioms of congruence, the axiom of continuity, models of absolute geometry, and Euclidean geometry, culminating in the treatment of Bolyai-Lobachevskian geometry. Part Two examines axioms of incidents and order and the axiom of continuity, concluding with an exploration of models of projective geometry.


Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds

Author: John Ratcliffe

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 761

ISBN-13: 1475740131

DOWNLOAD EBOOK

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.


A Simple Non-Euclidean Geometry and Its Physical Basis

A Simple Non-Euclidean Geometry and Its Physical Basis

Author: I.M. Yaglom

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 326

ISBN-13: 146126135X

DOWNLOAD EBOOK

There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.


New Foundations for Physical Geometry

New Foundations for Physical Geometry

Author: Tim Maudlin

Publisher:

Published: 2014-02

Total Pages: 374

ISBN-13: 0198701306

DOWNLOAD EBOOK

Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.


The Foundations of Geometry: Works on Non-Euclidean Geometry

The Foundations of Geometry: Works on Non-Euclidean Geometry

Author: Nikolai I. Lobachevsky

Publisher:

Published: 2019-10-02

Total Pages: 212

ISBN-13: 9781927763247

DOWNLOAD EBOOK

Neither general relativity (which revealed that gravity is merely manifestation of the non-Euclidean geometry of spacetime) nor modern cosmology would have been possible without the almost simultaneous and independent discovery of non-Euclidean geometry in the 19th century by three great mathematicians - Nikolai Ivanovich Lobachevsky, János Bolyai and Carl Friedrich Gauss (whose ideas were later further developed by Georg Friedrich Bernhard Riemann).This volume contains three works by Lobachevsky on the foundations of geometry and non-Euclidean geometry: "Geometry", "Geometrical investigations on the theory of parallel lines" and "Pangeometry". It will be of interest not only to experts and students in mathematics, physics, history and philosophy of science, but also to anyone who is not intimidated by the magnitude of one of the greatest discoveries of our civilization and would attempt to follow (and learn from) Lobachevsky's line of thought, helpfully illustrated by over 130 figures, that led him to the discovery.