Flexural Behavior of Reinforced Concrete Beams Strengthened with Externally Bonded Hybrid Systems

Flexural Behavior of Reinforced Concrete Beams Strengthened with Externally Bonded Hybrid Systems

Author: Abubakr Ahmed Abdelall Mohammed

Publisher:

Published: 2017

Total Pages: 116

ISBN-13:

DOWNLOAD EBOOK

"The demand for strengthening of aging reinforced concrete (RC) structures are continuously rising. Carbon fiber reinforced polymers (CFRP) are the most widely used externally bonded-reinforcing (EBR) materials for strengthening and retrofitting of RC structural members. The use of high strength galvanized steel mesh (GSM) strengthening material has recently gained some acceptance. However, Both CFRP and GSM have high strength but have low ductility. Recently developed aluminum alloys (AA) have high ductility and some desirable characteristics that may overcome some of the shortcomings of CFRP and GSM. Combining AA with CFRP and GSM will result in a hybrid material with balanced strength and ductility. Therefore, the major aim of this research is to develop a hybrid ductile and strong retrofitting system by combining AA plates with GSM and CFRP laminates to strengthen RC beams in flexure. A comprehensive experimental program was carried out to determine the tensile strength and the bond strength of the hybrid system. Fifteen-coupon specimens were tested for tensile strength, six specimens of concrete prisms for bond strength and 25 T-beam specimens for flexural strength under a four-point loading. Results showed an increase in the flexural capacity of the strengthened specimen ranging from 10% to 77% compared to the control beam and a decline in ductility of 13% to 59% compared to the un-strengthened specimen. Furthermore, analytical models based on ACI 440.2R-08 guidelines were employed to capture the flexural behavior of the tested specimens. Experimental results correlated well with the analytical predictions in a range of 30% of the experimental values. The study concluded that the newly proposed hybrid systems are promising systems for the improvement of the flexural behavior (strength and ductility) of RC beams."--Abstract.


Strengthening Design of Reinforced Concrete with FRP

Strengthening Design of Reinforced Concrete with FRP

Author: Hayder A. Rasheed

Publisher: CRC Press

Published: 2014-12-16

Total Pages: 246

ISBN-13: 1482235595

DOWNLOAD EBOOK

Strengthening Design of Reinforced Concrete with FRP establishes the art and science of strengthening design of reinforced concrete with fiber-reinforced polymer (FRP) beyond the abstract nature of the design guidelines from Canada (ISIS Canada 2001), Europe (FIB Task Group 9.3 2001), and the United States (ACI 440.2R-08). Evolved from thorough cla


Flexural Performance of Reinforced Concrete Beams Externally Strengthened with Carbon and Basalt FRP Sheets

Flexural Performance of Reinforced Concrete Beams Externally Strengthened with Carbon and Basalt FRP Sheets

Author: Sahar Samir Choobbor

Publisher:

Published: 2015

Total Pages: 104

ISBN-13:

DOWNLOAD EBOOK

"Different strengthening systems have been widely used for many years to retrofit and repair deficient structural members. Reinforced concrete (RC) slabs and beams are commonly strengthened in flexure by externally bonding Carbon Fiber Reinforced Polymer (CFRP) sheets to the bottom side of the member. The CFRP sheets used in strengthening applications have high strength; however, they are brittle materials with low ductility. Basalt Fiber Reinforced Polymer (BFRP) sheets on the other hand have relatively lower strength compared to CFRP, however they have higher ductility. As a result, there is growing interest among researchers and practitioners in combining different types of FRP sheets to produce an enhanced strengthening system in terms of strength and ductility. This study investigates the flexural behavior of RC beams externally strengthened with CFRP sheets, BFRP sheets, and their hybrid combination (CFRP-BFRP). This hybrid system is designed to enhance the properties of composites, where it combines the high strength of CFRP and high ductility of BFRP sheets, respectively. To investigate the behavior of the different strengthening systems, an experimental program was conducted on ten RC beams that were tested under four-point bending. The load versus mid-span deflection data were recorded and used to compare the performance of the strengthened specimens. The test results indicated that all strengthened specimens yielded higher flexural capacity and lower ductility values compared to the unstrengthened control beam. The increase in the flexural capacity of the strengthened beams ranged from 23% to 68% of the control beam. Moreover, the beams strengthened with BFRP and hybrid CFRP-BFRP sheets achieved higher ductility compared with the beams strengthened with CFRP sheets. Thus, it was concluded that the use of a hybrid combination of CFRP-BFRP sheets could achieve the desired increase in the flexural capacity of RC beams with an improved ductility compared to that with CFRP sheets only. Finite element (FE) models were also developed and were able to capture the behavior of the tested beams with a good level of accuracy. The predicted flexural capacity along with the associated mid-span deflection differed by 1% to 10% from the experimental values."--Abstract.


Strengthening of Reinforced Concrete Structures

Strengthening of Reinforced Concrete Structures

Author: L C Hollaway

Publisher: Elsevier

Published: 1999-03-05

Total Pages: 340

ISBN-13: 1855737612

DOWNLOAD EBOOK

The in situ rehabilitation or upgrading of reinforced concrete members using bonded steel plates is an effective, convenient and economic method of improving structural performance. However, disadvantages inherent in the use of steel have stimulated research into the possibility of using fibre reinforced polymer (FRP) materials in its place, providing a non-corrosive, more versatile strengthening system. This book presents a detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforces polymer composite plates. It is based to a large extent on material developed or provided by the consortium which studied the technology of plate bonding to upgrade structural units using carbon fibre / polymer composite materials. The research and trial tests were undertaken as part of the ROBUST project, one of several ventures in the UK Government's DTI-LINK Structural Composites Programme. The book has been designed for practising structural and civil engineers seeking to understand the principles and design technology of plate bonding, and for final year undergraduate and postgraduate engineers studying the principles of highway and bridge engineering and structural engineering. Detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforced polymer composites Contains in-depth case histories


Advances in FRP Composites in Civil Engineering

Advances in FRP Composites in Civil Engineering

Author: Lieping Ye

Publisher: Springer Science & Business Media

Published: 2012-02-01

Total Pages: 956

ISBN-13: 3642174876

DOWNLOAD EBOOK

"Advances in FRP Composites in Civil Engineering" contains the papers presented at the 5th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering in 2010, which is an official conference of the International Institute for FRP in Construction (IIFC). The book includes 7 keynote papers which are presented by top professors and engineers in the world and 203 papers covering a wide spectrum of topics. These important papers not only demonstrate the recent advances in the application of FRP composites in civil engineering, but also point to future research endeavors in this exciting area. Researchers and professionals in the field of civil engineering will find this book is exceedingly valuable. Prof. Lieping Ye and Dr. Peng Feng both work at the Department of Civil Engineering, Tsinghua University, China. Qingrui Yue is a Professor at China Metallurgical Group Corporation.


Composites for Construction

Composites for Construction

Author: Lawrence C. Bank

Publisher: John Wiley & Sons

Published: 2006-07-21

Total Pages: 572

ISBN-13: 0471681261

DOWNLOAD EBOOK

The first textbook on the design of FRP for structural engineering applications Composites for Construction is a one-of-a-kind guide to understanding fiber-reinforced polymers (FRP) and designing and retrofitting structures with FRP. Written and organized like traditional textbooks on steel, concrete, and wood design, it demystifies FRP composites and demonstrates how both new and retrofit construction projects can especially benefit from these materials, such as offshore and waterfront structures, bridges, parking garages, cooling towers, and industrial buildings. The code-based design guidelines featured in this book allow for demonstrated applications to immediately be implemented in the real world. Covered codes and design guidelines include ACI 440, ASCE Structural Plastics Design Manual, EUROCOMP Design Code, AASHTO Specifications, and manufacturer-published design guides. Procedures are provided to the structural designer on how to use this combination of code-like documents to design with FRP profiles. In four convenient sections, Composites for Construction covers: * An introduction to FRP applications, products and properties, and to the methods of obtaining the characteristic properties of FRP materials for use in structural design * The design of concrete structural members reinforced with FRP reinforcing bars * Design of FRP strengthening systems such as strips, sheets, and fabrics for upgrading the strength and ductility of reinforced concrete structural members * The design of trusses and frames made entirely of FRP structural profiles produced by the pultrusion process


Externally Bonded FRP Reinforcement for RC Structures

Externally Bonded FRP Reinforcement for RC Structures

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2001-01-01

Total Pages: 178

ISBN-13: 9782883940543

DOWNLOAD EBOOK

In December 1996, the then CEB established a Task Group with the main objective to elaborate design guidelines for the use of FRP reinforcement in accordance with the design format of the CEB-FIP Model Code and Eurocode2. With the merger of CEB and FIP into fib in 1998, this Task Group became fib TG 9.3 FRP Reinforcement for concrete structures in Commission 9 Reinforcing and Prestressing Materials and Systems. The Task Group consists of about 60 members, representing most European universities, research institutes and industrial companies working in the field of advanced composite reinforcement for concrete structures, as well as corresponding members from Canada, Japan and USA. Meetings are held twice a year and on the research level its work is supported by the EU TMR (European Union Training and Mobility of Researchers) Network "ConFibreCrete”. The work of fib TG 9.3 is performed by five working parties (WP): Material Testing and Characterization (MT&C) Reinforced Concrete (RC) Prestressed Concrete (PC) Externally Bonded Reinforcement (EBR) Marketing and Applications (M&A) This technical report constitutes the work conducted as of to date by the EBR party. This bulletin gives detailed design guidelines on the use of FRP EBR, the practical execution and the quality control, based on the current expertise and state-of-the-art knowledge of the task group members. It is regarded as a progress report since it is not the aim of this report to cover all aspects of RC strengthening with composites. Instead, it focuses on those aspects that form the majority of the design problems. several of the topics presented are subject of ongoing research and development, and the details of some modelling approaches may be subject to future revisions. as knowledge in this field is advancing rapidly, the work of the EBR WP will continue. Inspite of this limit in scope, considerable effort has been made to present a bulletin that is today’s state-of-art in the area of strengthening of concrete structures by means of externally bonded FRP reinforcement.