Essentials of Topology with Applications

Essentials of Topology with Applications

Author: Steven G. Krantz

Publisher: CRC Press

Published: 2009-07-28

Total Pages: 422

ISBN-13: 1420089757

DOWNLOAD EBOOK

Brings Readers Up to Speed in This Important and Rapidly Growing AreaSupported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological


Topology and Its Applications

Topology and Its Applications

Author: William F. Basener

Publisher: John Wiley & Sons

Published: 2013-06-12

Total Pages: 295

ISBN-13: 1118626222

DOWNLOAD EBOOK

Discover a unique and modern treatment of topology employing a cross-disciplinary approach Implemented recently to understand diverse topics, such as cell biology, superconductors, and robot motion, topology has been transformed from a theoretical field that highlights mathematical theory to a subject that plays a growing role in nearly all fields of scientific investigation. Moving from the concrete to the abstract, Topology and Its Applications displays both the beauty and utility of topology, first presenting the essentials of topology followed by its emerging role within the new frontiers in research. Filling a gap between the teaching of topology and its modern uses in real-world phenomena, Topology and Its Applications is organized around the mathematical theory of topology, a framework of rigorous theorems, and clear, elegant proofs. This book is the first of its kind to present applications in computer graphics, economics, dynamical systems, condensed matter physics, biology, robotics, chemistry, cosmology, material science, computational topology, and population modeling, as well as other areas of science and engineering. Many of these applications are presented in optional sections, allowing an instructor to customize the presentation. The author presents a diversity of topological areas, including point-set topology, geometric topology, differential topology, and algebraic/combinatorial topology. Topics within these areas include: Open sets Compactness Homotopy Surface classification Index theory on surfaces Manifolds and complexes Topological groups The fundamental group and homology Special "core intuition" segments throughout the book briefly explain the basic intuition essential to understanding several topics. A generous number of figures and examples, many of which come from applications such as liquid crystals, space probe data, and computer graphics, are all available from the publisher's Web site.


Essential Topology

Essential Topology

Author: Martin D. Crossley

Publisher: Springer Science & Business Media

Published: 2011-02-11

Total Pages: 244

ISBN-13: 9781852337827

DOWNLOAD EBOOK

This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.


Topology Through Inquiry

Topology Through Inquiry

Author: Michael Starbird

Publisher: American Mathematical Soc.

Published: 2020-09-10

Total Pages: 313

ISBN-13: 1470462613

DOWNLOAD EBOOK

Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.


Elementary Concepts of Topology

Elementary Concepts of Topology

Author: Paul Alexandroff

Publisher: Courier Corporation

Published: 2012-08-13

Total Pages: 68

ISBN-13: 0486155064

DOWNLOAD EBOOK

Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.


Elements of Point Set Topology

Elements of Point Set Topology

Author: John D. Baum

Publisher: Courier Corporation

Published: 1991-01-01

Total Pages: 164

ISBN-13: 0486668266

DOWNLOAD EBOOK

Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.


Introduction to Topology

Introduction to Topology

Author: Colin Conrad Adams

Publisher: Pearson

Published: 2008

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

Learn the basics of point-set topology with the understanding of its real-world application to a variety of other subjects including science, economics, engineering, and other areas of mathematics. Introduces topology as an important and fascinating mathematics discipline to retain the readers interest in the subject. Is written in an accessible way for readers to understand the usefulness and importance of the application of topology to other fields. Introduces topology concepts combined with their real-world application to subjects such DNA, heart stimulation, population modeling, cosmology, and computer graphics. Covers topics including knot theory, degree theory, dynamical systems and chaos, graph theory, metric spaces, connectedness, and compactness. A useful reference for readers wanting an intuitive introduction to topology.


A Combinatorial Introduction to Topology

A Combinatorial Introduction to Topology

Author: Michael Henle

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 340

ISBN-13: 9780486679662

DOWNLOAD EBOOK

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.


Applications of Algebraic Topology

Applications of Algebraic Topology

Author: S. Lefschetz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 190

ISBN-13: 1468493671

DOWNLOAD EBOOK

This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.