Epitaxial Microstructures

Epitaxial Microstructures

Author:

Publisher: Academic Press

Published: 1994-09-15

Total Pages: 457

ISBN-13: 0080864376

DOWNLOAD EBOOK

Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures. - Atomic-level control of semiconductor microstructures - Molecular beam epitaxy, metal-organic chemical vapor deposition - Quantum wells and quantum wires - Lasers, photon(IR)detectors, heterostructure transistors


Ceramic Microstructures

Ceramic Microstructures

Author: Antoni P. Tomsia

Publisher: Springer Science & Business Media

Published: 1998-04-30

Total Pages: 876

ISBN-13: 9780306458170

DOWNLOAD EBOOK

This volume, titled Proceedings of the International Materials Symposium on Ce ramic Microstructures: Control at the Atomic Level summarizes the progress that has been achieved during the past decade in understanding and controlling microstructures in ceram ics. A particular emphasis of the symposium, and therefore of this volume, is advances in the characterization, understanding, and control of micro structures at the atomic or near-atomic level. This symposium is the fourth in a series of meetings, held every ten years, devoted to ceramic microstructures. The inaugural meeting took place in 1966, and focussed on the analysis, significance, and production of microstructure; the symposium emphasized the need for, and importance of characterization in achieving a more complete understanding of the physical and chemical characteristics of ceramics. A consensus emerged at that meeting on the critical importance of characterization in achieving a more complete understanding of ceramic properties. That point of view became widely accepted in the ensuing decade. The second meeting took place in 1976 at a time of world-wide energy shortages and thus emphasized energy-related applications of ceramics, and more specifically, microstructure-property relationships of those materials. The third meeting, held in 1986, was devoted to the role that interfaces played both during processing, and in influencing the ultimate properties of single and polyphase ceramics, and ceramic-metal systems.


Epitaxy of Semiconductors

Epitaxy of Semiconductors

Author: Udo W. Pohl

Publisher: Springer Nature

Published: 2020-07-20

Total Pages: 546

ISBN-13: 3030438694

DOWNLOAD EBOOK

The extended and revised edition of this textbook provides essential information for a comprehensive upper-level graduate course on the crystalline growth of semiconductor heterostructures. Heteroepitaxy is the basis of today’s advanced electronic and optoelectronic devices, and it is considered one of the most important fields in materials research and nanotechnology. The book discusses the structural and electronic properties of strained epitaxial layers, the thermodynamics and kinetics of layer growth, and it describes the major growth techniques: metalorganic vapor-phase epitaxy, molecular-beam epitaxy, and liquid-phase epitaxy. It also examines in detail cubic and hexagonal semiconductors, strain relaxation by misfit dislocations, strain and confinement effects on electronic states, surface structures, and processes during nucleation and growth. Requiring only minimal knowledge of solid-state physics, it provides natural sciences, materials science and electrical engineering students and their lecturers elementary introductions to the theory and practice of epitaxial growth, supported by references and over 300 detailed illustrations. In this second edition, many topics have been extended and treated in more detail, e.g. in situ growth monitoring, application of surfactants, properties of dislocations and defects in organic crystals, and special growth techniques like vapor-liquid-solid growth of nanowires and selective-area epitaxy.


Silicon Epitaxy

Silicon Epitaxy

Author:

Publisher: Elsevier

Published: 2001-09-26

Total Pages: 514

ISBN-13: 0080541003

DOWNLOAD EBOOK

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.


Introduction to Surface and Thin Film Processes

Introduction to Surface and Thin Film Processes

Author: John Venables

Publisher: Cambridge University Press

Published: 2000-08-31

Total Pages: 392

ISBN-13: 9780521785006

DOWNLOAD EBOOK

This book covers the experimental and theoretical understanding of surface and thin film processes. It presents a unique description of surface processes in adsorption and crystal growth, including bonding in metals and semiconductors. Emphasis is placed on the strong link between science and technology in the description of, and research for, new devices based on thin film and surface science. Practical experimental design, sample preparation and analytical techniques are covered, including detailed discussions of Auger electron spectroscopy and microscopy. Thermodynamic and kinetic models of structure are emphasised throughout. The book provides extensive leads into practical and research literature, as well as resources on the World Wide Web (see http://venables.asu.edu/book). Each chapter contains problems which aim to develop awareness of the subject and the methods used. Aimed as a graduate textbook, this book will also be useful as a sourcebook for graduate students, researchers and practitioners in physics, chemistry, materials science and engineering.


Quantum States And Scattering In Semiconductor Nanostructures

Quantum States And Scattering In Semiconductor Nanostructures

Author: Gerald Bastard

Publisher: World Scientific Publishing Company

Published: 2017-08-03

Total Pages: 449

ISBN-13: 1786343045

DOWNLOAD EBOOK

This book is an introduction to quantum states and of their scattering in semiconductor nanostructures. Written with exercises and detailed solutions, it is designed to enable readers to start modelling actual electron states and scattering in nanostructures. It first looks at practical aspects of quantum states and emphasises the variational and perturbation approaches. Following this there is analysis of quasi two-dimensional materials, including discussion of the eigenstates of nanostructures, scattering mechanisms and their numerical results.Focussing on practical applications, this book moves away from standard discourse on theory and provides students of physics, nanotechnology and materials science with the opportunity to fully understand the electronic properties of nanostructures.