This book describes the origin, use, and limitations of electrochemical phase diagrams, testing schemes for active, passive, and localized corrosion, the development and electrochemical characterization of passivity, and methods in process alteration, failure prediction, and materials selection. It offers useful guidelines for assessing the efficac
This book describes the origin, use, and limitations of electrochemical phase diagrams, testing schemes for active, passive, and localized corrosion, the development and electrochemical characterization of passivity, and methods in process alteration, failure prediction, and materials selection. It offers useful guidelines for assessing the efficacy of corrosion inhibitors and coatings for metals and alloys, developing effective corrosion prediction models, calculating the corrosion rates of various materials, determining the resistance of alloys to pitting and crevice corrosion, and considering current and potential distribution effects on corrosion.
Techniques for Corrosion Monitoring, Second Edition, reviews electrochemical techniques for corrosion monitoring, such as polarization techniques, potentiometric methods, electrochemical noise and harmonic analyses, galvanic sensors, differential flow through cells and multielectrode systems. Other sections analyze the physical or chemical methods of corrosion monitoring, including gravimetric, radioactive tracer, hydrogen permeation, electrical resistance and rotating cage techniques, and examine corrosion monitoring in special environments such as microbial systems, concrete and soil, and remote monitoring and model predictions. A final group of chapters case studies covering ways in which corrosion monitoring can be applied to engine exhaust systems, cooling water systems, and more. With its distinguished editor and international team of contributors, this book is a valuable reference guide for engineers and scientific and technical personnel who deal with corrosion in such areas as automotive engineering, power generation, water suppliers and the petrochemical industry. Provides an in-depth presentation of what current corrosion monitoring techniques are available Presents insights into how to choose the best technique(s) for specific corrosion monitoring needs Includes case studies that highlight the main issues Serves as a valuable reference guide for engineers and scientific and technical personnel who deal with corrosion
Damage from corrosion costs billions of dollars per year. Controlling corrosion requires a fundamental, in-depth understanding of the mechanisms and phenomena involved, and this understanding is best achieved through advanced analytical methods. The first book to treat both surface analytical and electrochemical techniques in a single reference, An
Corrosion is a huge issue for materials, mechanical, civil and petrochemical engineers. With comprehensive coverage of the principles of corrosion engineering, this book is a one-stop text and reference for students and practicing corrosion engineers. Highly illustrated, with worked examples and definitions, it covers basic corrosion principles, and more advanced information for postgraduate students and professionals. Basic principles of electrochemistry and chemical thermodynamics are incorporated to make the book accessible for students and engineers who do not have prior knowledge of this area. Each form of corrosion covered in the book has a definition, description, mechanism, examples and preventative methods. Case histories of failure are cited for each form. End of chapter questions are accompanied by an online solutions manual.* Comprehensively covers the principles of corrosion engineering, methods of corrosion protection and corrosion processes and control in selected engineering environments* Structured for corrosion science and engineering classes at senior undergraduate and graduate level, and is an ideal reference that readers will want to use in their professional work* Worked examples, extensive end of chapter exercises and accompanying online solutions and written by an expert from a key pretochemical university
This book covers a wide range of advanced analytical tools, from electrochemical to in-situ/ex-situ material characterization techniques, as well as the modeling of corrosion systems to foster understanding and prediction. When used properly, these tools can enrich our understanding of material performance (metallic materials, coatings, inhibitors) in various environments/contexts (aqueous corrosion, high-temperature corrosion). The book encourages researchers to develop new corrosion-resistant materials and supports them in devising suitable asset integrity strategies. Offering a valuable resource for researchers, industry professionals, and graduate students alike, the book shows them how to apply these valuable analytical tools in their work. .
Metals are used at an extremely high rate in the industrial and manufacturing fields. Exemplary properties including strength and ductility have made this material highly dynamic; however, the risk of corrosion remains a vital issue. The study of corrosion prevention has attracted interest from researchers and professionals as new technologies are emerging that can assist in the prevention of material destruction. However, research is lacking on the application of these protective technologies within specific fields. New Challenges and Industrial Applications for Corrosion Prevention and Control provides emerging research exploring the theoretical and practical aspects of protective methods against corrosion and the implementation of these techniques within a wide span of professional disciplines. Featuring coverage on a broad range of topics such as molecular modeling, surface treatments, and biomaterials, this book is ideally designed for engineers, industrial chemists, material scientists, researchers, engineers, academicians, practitioners, and students seeking current research on the technological advancements in corrosion protection in various professional scopes.
Workers in the field of corrosion and their students are most fortunate that a happy set of circumstances brought Dr. Marcel Pourbaix into their field in 1949. First, he was invited, while in the USA, to demonstrate at a two week visit to the National Bureau of Standards the usefulness of his electro chemical concepts to the study of corrosion. Secondly, also around the same time, Prof. H. H. Uhlig made a speech before the United Nations which pointed out the tremendous economic consequences of corrosion. Because of these circumstances, Dr. Pourbaix has reminisced, he chose to devote most of his efforts to corrosion rather than to electrolysis, batteries, geology, or any of the other fields where, one might add, they were equally valuable. This decision resulted in his establishing CEBELCOR (Centre BeIge d'Etude de la Corrosion) and in his development of a course at the Free University of Brussels entitled "Lectures on Electrochemical Corrosion." This book is the collection of these lectures translated into English.
The present volume of Modern Aspects of Electrochemistry is composed of four chapters covering topics having relevance both in corrosion science and materials engineering. All of the chapters provide comprehensive coverage of recent advances in corrosion science. The first chapter, by Maurice and Marcus, provides a comprehensive review on the structural aspects and anti-corrosion properties of passive films on metals and alloys. These authors look at recent experimental data collected by in-situ microscopic techniques coupled with electrochemical methods. A detailed description is given of the nucleation and growth of 2-dimensional passive films at earlier stages, their effect on the corrosion properties of metal surfaces, and the nanostructures of- dimensional passive films. On the basis of the experimental data reviewed, the authors present a model for passivity breakdown and pit initiation, which takes into account the preferential role of grain boundaries. In Chapter 2, Takahashi and his co-workers give a specialized account on the electrochemical and structural properties of anodic oxide films formed on aluminum. In addition to the electrochemical corrosion-related problems of anodic oxide films, the chapter reviews state-of-the-art research of nano-/mic- fabrications based on anodizing treatments combined with chemical/mechanical processes such as laser irradiation, atomic force micro-probe processing and thin film deposition techniques.