Eigenvalue Problems in Power Systems

Eigenvalue Problems in Power Systems

Author: Federico Milano

Publisher: CRC Press

Published: 2020-12-22

Total Pages: 407

ISBN-13: 1000335208

DOWNLOAD EBOOK

The book provides a comprehensive taxonomy of non-symmetrical eigenvalues problems as applied to power systems. The book bases all formulations on mathematical concept of “matrix pencils” (MPs) and considers both regular and singular MPs for the eigenvalue problems. Each eigenvalue problem is illustrated with a variety of examples based on electrical circuits and/or power system models and controllers and related data are provided in the appendices of the book. Numerical methods for the solution of all considered eigenvalue problems are discussed. The focus is on large scale problems and, hence, attention is dedicated to the performance and scalability of the methods. The target of the book are researchers and graduated students in Electrical & Computer Science Engineering, both taught and research Master programmes as well as PhD programmes and it: explains eigenvalue problems applied into electrical power systems explains numerical examples on applying the mathematical methods, into studying small signal stability problems of realistic and large electrical power systems includes detailed and in-depth analysis including non-linear and other advanced aspects provides theoretical understanding and advanced numerical techniques essential for secure operation of power systems provides a comprehensive set of illustrative examples that support theoretical discussions


Large Scale Eigenvalue Problems

Large Scale Eigenvalue Problems

Author: J. Cullum

Publisher: Elsevier

Published: 1986-01-01

Total Pages: 339

ISBN-13: 0080872387

DOWNLOAD EBOOK

Results of research into large scale eigenvalue problems are presented in this volume. The papers fall into four principal categories:novel algorithms for solving large eigenvalue problems, novel computer architectures, computationally-relevant theoretical analyses, and problems where large scale eigenelement computations have provided new insight.


Voltage Stability of Electric Power Systems

Voltage Stability of Electric Power Systems

Author: Thierry van Cutsem

Publisher: Springer Science & Business Media

Published: 2007-11-27

Total Pages: 382

ISBN-13: 0387755365

DOWNLOAD EBOOK

Voltage Stability is a relatively recent and challenging problem in Power Systems Engineering. It is gaining in importance as the trend of operating power systems closer to their limits continues to increase. Voltage Stability of Electric Power Systems presents a clear description of voltage instability and collapse phenomena. It proposes a uniform and coherent theoretical framework for analysis and covers state-of-the-art methods. The book describes practical methods that can be used for voltage security assessment and offers a variety of examples.


Computational Methods for Electric Power Systems

Computational Methods for Electric Power Systems

Author: Mariesa L. Crow

Publisher: CRC Press

Published: 2009-08-17

Total Pages: 304

ISBN-13: 1420086618

DOWNLOAD EBOOK

Improve Compensation Strategies for Package ShortcomingsIn today's deregulated environment, the nation's electric power network is forced to operate in a manner for which it was not designed. As a result, precision system analysis is essential to predict and continually update network operating status, estimate current power flows and bus voltages,


Subsynchronous Resonance in Power Systems

Subsynchronous Resonance in Power Systems

Author: Paul M. Anderson

Publisher: John Wiley & Sons

Published: 1999-02-02

Total Pages: 292

ISBN-13: 9780780353503

DOWNLOAD EBOOK

Mathematical calculations for subsynchronous system modeling Subsynchronous Resonance in Power Systems provides in-depth guidance toward the parameters, modeling, and analysis of this complex subclass of power systems. Emphasizing field testing to determine the data required, this book facilitates thorough and efficient oscillation and damping modeling using eigenvalues of a system's linear model. Expert discussion provides step-by-step instruction for generator, network, and turbine-generator shaft models, followed by detailed tutorials for model testing and analysis based on IEEE, CORPALS, and SSR eigenvalue analysis. Comprehensive in scope and practical in focus, this book is an invaluable resource for anyone working with frequencies below 60 Hz.


Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems

Author: Yousef Saad

Publisher: SIAM

Published: 2011-01-01

Total Pages: 292

ISBN-13: 9781611970739

DOWNLOAD EBOOK

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.


Modern Power Systems Analysis

Modern Power Systems Analysis

Author: Xi-Fan Wang

Publisher: Springer Science & Business Media

Published: 2010-06-07

Total Pages: 561

ISBN-13: 0387728538

DOWNLOAD EBOOK

The capability of effectively analyzing complex systems is fundamental to the operation, management and planning of power systems. This book offers broad coverage of essential power system concepts and features a complete and in-depth account of all the latest developments, including Power Flow Analysis in Market Environment; Power Flow Calculation of AC/DC Interconnected Systems and Power Flow Control and Calculation for Systems Having FACTS Devices and recent results in system stability.


Power System Simulation

Power System Simulation

Author: J.P. Barret

Publisher: Springer Science & Business Media

Published: 1996-12-31

Total Pages: 312

ISBN-13: 9780412638701

DOWNLOAD EBOOK

The authors, writing with the experience and technological background of Electricite de France, an organisation at the forefront of simulation methods, provide a comprehensive and comprehensible treatment of the modelling and simulation techniques currently in use. The text emphasises model design applied to power plants producing energy, generators and motors carrying out energy transformations and networks transmitting energy. The systems are analysed considering each process, from steady state to fast transients, with detailed explanation of the problem to be solved, the choice of models and methods for optimising efficiency. Many examples and references are provided. The book is essential reading for anyone involved in power system engineering, from practising design and development engineers to researchers and postgraduate and advanced graduate students.


Handbook of Electrical Power System Dynamics

Handbook of Electrical Power System Dynamics

Author: Mircea Eremia

Publisher: John Wiley & Sons

Published: 2013-02-21

Total Pages: 914

ISBN-13: 1118516060

DOWNLOAD EBOOK

This book aims to provide insights on new trends in power systems operation and control and to present, in detail, analysis methods of the power system behavior (mainly its dynamics) as well as the mathematical models for the main components of power plants and the control systems implemented in dispatch centers. Particularly, evaluation methods for rotor angle stability and voltage stability as well as control mechanism of the frequency and voltage are described. Illustrative examples and graphical representations help readers across many disciplines acquire ample knowledge on the respective subjects.


Interval Methods for Uncertain Power System Analysis

Interval Methods for Uncertain Power System Analysis

Author: Alfredo Vaccaro

Publisher: John Wiley & Sons

Published: 2023-10-31

Total Pages: 148

ISBN-13: 1119855047

DOWNLOAD EBOOK

Explore the applications of range analysis to power systems under conditions of uncertainty In Interval Methods for Uncertain Power System Analysis, accomplished engineer Dr. Alfredo Vaccaro delivers a comprehensive discussion of the mathematical foundations of range analysis and its application to solving traditional power system operation problems in the presence of strong and correlated uncertainties. The book explores highly relevant topics in the area, from interval methods for uncertainty representation and management to a variety of application examples. The author offers readers the latest methodological breakthroughs and roadmaps to implementing the mathematics discussed within, as well as best practices commonly employed across the industry. Interval Methods for Uncertain Power System Analysis includes examinations of linear and non-linear equations, as well as: A thorough introduction to reliable computing, including discussions of interval arithmetic and interval-based operators Comprehensive explorations of uncertain power flow analysis, including discussions of problem formulation and sources of uncertainty in power flow analysis In-depth examinations of uncertain optimal power flow analysis Fulsome discussions of uncertain small signal stability analysis, including treatments of how to compute eigenvalues of uncertain matrices Perfect for engineers working in power flow and optimal power flow analyses, optimization theory, and computer aided simulation, Interval Methods for Uncertain Power System Analysis will also earn a place in the libraries of researchers and graduate students studying decision making under uncertainty in power systems operation.