Development of the DOE Nuclear Criticality Safety Program Web Site for the Nuclear Criticality Safety Professional

Development of the DOE Nuclear Criticality Safety Program Web Site for the Nuclear Criticality Safety Professional

Author:

Publisher:

Published: 2000

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Development of the DOE Nuclear Criticality Safety Program (NCSP) web site is the result of the efforts of marry members of the Nuclear Criticality Safety (NCS) community and is maintained by Lawrence Livermore National Laboratory under the direction of the NCSP Management Team. This World Wide Web (WWW) resource was developed as part of the DOE response to the DNFSB Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The NCSP web site provides information of interest to NCS professionals and includes links to other sites actively involved in the collection and dissemination of criticality safety information. To the extent possible, the hyperlinks on this web site direct the user to the original source of the referenced material in order to ensure access to the latest, most accurate version.


Integration of Several Elements of the DOE Nuclear Criticality Safety Program

Integration of Several Elements of the DOE Nuclear Criticality Safety Program

Author:

Publisher:

Published: 2001

Total Pages: 5

ISBN-13:

DOWNLOAD EBOOK

The U.S. Department of Energy established the Nuclear Criticality Safety Program (NCSP) to maintain the infrastructure and expertise in nuclear criticality safety to support line criticality safety programs at various DOE sites. The seven tasks of the NCSP include critical experiments, benchmarking, nuclear data, analytical methods, applicable ranges of bounding curves and data, information preservation and dissemination, and training and qualification. The goals of this program are to improve the knowledge, tools, data, guidance, and information available to the nuclear criticality safety community. In addition various elements of the NCSP are integrated together to provide the nuclear criticality safety community with the most precise nuclear data for criticality safety analyses. This paper describes how several elements of the NCSP were integrated together in the evaluation of the silicon nuclear data. Silicon is frequently encountered in decontamination and decommissioning efforts, process sludge and settling tanks, in situ vitrification, and waste remediation efforts (including waste storage, retrieval, characterization, volume reduction, and stabilization). Silicon was also identified as an important isotope for addressing concerns associated with the storage of spent nuclear fuels in a geologic repository. The inadequacy of the silicon nuclear data in the intermediate energy region mandated that additional neutron capture cross-section measurements had to be performed that encompassed the resolved resonance region. An evaluation was performed that included analysis of the most recent neutron capture and existing transmission cross-section measurements performed at the Oak Ridge Electron Linear Accelerator. Critical experiments were performed at the Institute of Physics and Power Engineering in Obninsk, Russia because of the lack of critical experiment data for analysis of storage of nuclear material in a geologic repository. These critical experiments were evaluated and benchmark models were developed and submitted to the International Criticality Safety Benchmark Evaluation Project for review and publication in the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments''. Sensitivity analyses were performed as a part of the benchmark evaluation to determine the sensitivity of the critical experiments to the various constituents of the assembly. The benchmark models were then used to determine the computed k{sub eff} for various cross section data sets. The variation in the computed k{sub eff} value for the new evaluated data set was then used as an indicator to adjust the negative energy capture widths for the capture cross section data. Furthermore, the changes in k{sub eff} were used as an indicator to the inadequacy of previous measured data in the unresolved resonance region. The result of the efforts of the NCSP provided the most precise set of nuclear data for silicon. The resulting ORNL evaluation produced the most consistent evaluation for silicon. This result could only be achieved through integration of many components of the NCSP.


The Department of Energy Nuclear Criticality Safety Program

The Department of Energy Nuclear Criticality Safety Program

Author:

Publisher:

Published: 2004

Total Pages: 8

ISBN-13:

DOWNLOAD EBOOK

This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.


Web-based Nuclear Criticality Safety Bibliographic Database

Web-based Nuclear Criticality Safety Bibliographic Database

Author:

Publisher:

Published: 2000

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Lawrence Livermore National Laboratory has prepared a Nuclear Criticality Safety Bibliographic Database that is now available via the Internet. This database is a component of the U.S. DOE Nuclear Criticality Safety Program (NCSP) Web site. This WWW resource was developed as part of the DOE response to the DNFSB Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. To the extent possible, the hyperlinks on the Web pages direct the user to original source of the reference material in order to ensure accuracy and access to the latest versions. A master index is in place for simple navigation through the site. A search capability is available to assist in locating the on-line reference materials. Among the features included are: A user-friendly site map for ease of use; A personnel registry; Links to all major laboratories and organizations involved in the many aspects of criticality safety; General help for new criticality safety practitioners, including basic technical references and training modules; A discussion of computational methods; An interactive question and answer forum for the criticality safety community; and Collections of bibliographic references mdvahdation experiments. This paper will focus on the bibliographic database. This database evolved from earlier work done by the DOE's Nuclear Criticality Information System (NCIS) maintained at LLNL during the 1980s. The bibliographic database at the time of the termination of NCIS were composed principally of three parts: (1) A critical experiment bibliography of 1067 citations (reported in UCRL-52769); (2) A compilation of criticality safety papers from Volumes 1 through 41 of the Transactions of the American Nuclear Society (reported in UCRL-53369); and (3) A general criticality bibliography of several thousand citations (unpublished). When the NCIS project was terminated the database was nearly lost but, fortunately, several years later most of the data were restored from backup tapes that had been archived by LLNL's ICNC conferences and American Nuclear Society publications, Nuclear Science and Engineering and Nuclear Technology. Since the Rocky Flats facility is heading for closure maintenance of the database was again threatened. This has now been avoided since LLNL was selected in 1999 to fulfill part of the ''Information Preservation and Dissemination'' task of the DOE's Nuclear Criticality Safety Program Five-Year Plan. This effort will ''collect, preserve and make readily available criticality safety information'' and make the information available via the Internet.


Nuclear Criticality Safety Department Qualification Program

Nuclear Criticality Safety Department Qualification Program

Author:

Publisher:

Published: 1996

Total Pages: 21

ISBN-13:

DOWNLOAD EBOOK

The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document.


Nuclear Criticality Safety Training

Nuclear Criticality Safety Training

Author:

Publisher:

Published:

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included.