Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting

Author: Alper Erturk

Publisher: John Wiley & Sons

Published: 2011-04-04

Total Pages: 377

ISBN-13: 1119991358

DOWNLOAD EBOOK

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.


Mechanical Design of Piezoelectric Energy Harvesters

Mechanical Design of Piezoelectric Energy Harvesters

Author: Qingsong Xu

Publisher: Elsevier

Published: 2021-10-27

Total Pages: 288

ISBN-13: 0128233648

DOWNLOAD EBOOK

Mechanical Design of Piezoelectric Energy Harvesters: Generating Electricity from Human Walking provides the state-of-the-art, recent mechanical designs of piezoelectric energy harvesters based on piezoelectric stacks. The book discusses innovative mechanism designs for energy harvesting from multidimensional force excitation, such as human walking, which offers higher energy density. Coverage includes analytical modeling, optimal design, simulation study, prototype fabrication, and experimental investigation. Detailed examples of their analyses and implementations are provided. The book's authors provide a unique perspective on this field, primarily focusing on novel designs for PZT Energy harvesting in biomedical engineering as well as in integrated multi-stage force amplification frame. This book presents force-amplification compliant mechanism design and force direction-transmission mechanism design. It explores new mechanism design approaches using piezoelectric materials and permanent magnets. Readers can expect to learn how to design new mechanisms to realize multidimensional energy harvesting systems. Provides new mechanical designs of piezoelectric energy harvesters for multidimensional force excitation Contains both theoretical and experimental results Fully supported with real-life examples on design, modeling and implementation of piezoelectric energy harvesting devices


Mechanical Design of Piezoelectric Energy Harvesters

Mechanical Design of Piezoelectric Energy Harvesters

Author: Qingsong Xu

Publisher: Academic Press

Published: 2021-10-22

Total Pages: 290

ISBN-13: 0128236531

DOWNLOAD EBOOK

Mechanical Design of Piezoelectric Energy Harvesters: Generating Electricity from Human Walking provides the state-of-the-art, recent mechanical designs of piezoelectric energy harvesters based on piezoelectric stacks. The book discusses innovative mechanism designs for energy harvesting from multidimensional force excitation, such as human walking, which offers higher energy density. Coverage includes analytical modeling, optimal design, simulation study, prototype fabrication, and experimental investigation. Detailed examples of their analyses and implementations are provided. The book's authors provide a unique perspective on this field, primarily focusing on novel designs for PZT Energy harvesting in biomedical engineering as well as in integrated multi-stage force amplification frame. This book presents force-amplification compliant mechanism design and force direction-transmission mechanism design. It explores new mechanism design approaches using piezoelectric materials and permanent magnets. Readers can expect to learn how to design new mechanisms to realize multidimensional energy harvesting systems. - Provides new mechanical designs of piezoelectric energy harvesters for multidimensional force excitation - Contains both theoretical and experimental results - Fully supported with real-life examples on design, modeling and implementation of piezoelectric energy harvesting devices


Design, Fabrication, and Testing of Piezoelectric Energy Harvesters

Design, Fabrication, and Testing of Piezoelectric Energy Harvesters

Author: A. K. Batra

Publisher:

Published: 2018

Total Pages: 52

ISBN-13: 9781510622197

DOWNLOAD EBOOK

This Spotlight describes the configurations and performance optimization of piezoelectric energy harvesters. It presents in detail all of the relevant parameters to test the performance of piezoelectric and pyroelectric energy harvesters, including the latest measurement techniques. The specifications of state-of-the-art instruments are included. The text serves as a step-by-step instruction manual that will help readers to set up their own laboratory to design, characterize, and analyze the performance of energy harvesters. LabVIEW software is utilized to control instruments and acquire data from a piezoelectric energy harvester test station.


Design and Fabrication of Self-Powered Micro-Harvesters

Design and Fabrication of Self-Powered Micro-Harvesters

Author: C. T. Pan

Publisher: John Wiley & Sons

Published: 2014-04-09

Total Pages: 344

ISBN-13: 1118487826

DOWNLOAD EBOOK

Presents the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electrospunpiezo-energy with interdigital electrode. Focusing on the latest developments of self-powered microgenerators such as micro rotary with LTCC and filament winding method, flexible substrate, and piezo fiber-typed microgenerator with sound organization, the fabrication processes involved in MEMS and nanotechnology are introduced chapter by chapter. In addition, analytical solutions are developed for each generator to help the reader to understand the fundamentals of physical phenomena. Fully illustrated throughout and of a high technical specification, it is written in an accessible style to provide an essential reference for industry and academic researchers. Comprehensive treatment of the newer harvesting devices including vibration-induced and rotary electromagnetic microgenerators, polyvinylidene fluoride (PVDF) nanoscale/microscale fiber, and piezo-micro-generators Presents innovative technologies including LTCC (low temperature co-fire ceramic) processes, and PCB (printed circuit board) processes Offers interdisciplinary interest in MEMS/NEMS technologies, green energy applications, bio-related sensors, actuators and generators Presented in a readable style describing the fundamentals, applications and explanations of micro-harvesters, with full illustration


Power Harvesting Via Smart Materials

Power Harvesting Via Smart Materials

Author: A. K. Batra

Publisher: SPIE-International Society for Optical Engineering

Published: 2017

Total Pages: 0

ISBN-13: 9781510608498

DOWNLOAD EBOOK

Covers the fundamentals, fabrication, testing, and modelling of ambient energy harvesters based on three main streams of energy-harvesting mechanisms: piezoelectrics, ferroelectrics, and pyroelectrics. It addresses their commercial and biomedical applications, as well as the latest research results.


Energy Harvesting Technologies

Energy Harvesting Technologies

Author: Shashank Priya

Publisher: Springer Science & Business Media

Published: 2008-11-28

Total Pages: 522

ISBN-13: 038776464X

DOWNLOAD EBOOK

Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.


Piezoelectric Aeroelastic Energy Harvesting

Piezoelectric Aeroelastic Energy Harvesting

Author: Hassan Elahi

Publisher: Elsevier

Published: 2021-11-25

Total Pages: 282

ISBN-13: 0128239689

DOWNLOAD EBOOK

Piezoelectric Aeroelastic Energy Harvesting explains the design and implementation of piezoelectric energy harvesting devices based on fluid-structure interaction. There is currently an increase in demand for low power electronic instruments in a range of settings, and recent advances have driven their energy consumption downwards. As a result, the possibility to extract energy from an operational environment is of growing significance to industry and academic research globally. This book solves problems related to the integration of smart structures with the aeroelastic system, addresses the importance of the aerodynamic model on accurate prediction of the performance of the energy harvester, describes the overall effect of the piezoelectric patch on the dynamics of the system, and explains different mechanisms for harvesting energy via fluid-structure interaction. This wealth of innovative technical information is supported by introductory chapters on piezoelectric materials, energy harvesting and circuits, and fluid structure interaction, opening this interdisciplinary topic up for readers with a range of backgrounds. Provides new designs of piezoelectric energy harvesters for fluid-structure interaction Explains how to correctly model aerodynamics for effective aeroelastic energy harvesting Numerical examples allow the reader to practice the design, modeling and implementation of piezoelectric energy harvesting devices


Role of IoT in Green Energy Systems

Role of IoT in Green Energy Systems

Author: Ponnusamy, Vasaki

Publisher: IGI Global

Published: 2021-02-05

Total Pages: 405

ISBN-13: 1799867110

DOWNLOAD EBOOK

In the era of Industry 4.0, the world is increasingly becoming smarter as everything from mobile phones to cars to TVs connects with unique addresses and communication mechanisms. However, in order to enable the smart world to be sustainable, ICT must embark into energy efficient paradigms. Green ICT is a moving factor contributing towards energy efficiency by reducing energy utilization through software or hardware procedures. Role of IoT in Green Energy Systems presents updated research trends in green technology and the latest product and application developments towards green energy. Covering topics that include energy conservation and harvesting, renewable energy, and green and underwater internet of things, this essential reference book creates further awareness of smart energy and critically examines the contributions of ICT towards green technologies. IT specialists, researchers, academicians, and students in the area of energy harvesting and energy management, and/or those working towards green energy technologies, wireless sensor networks, and smart applications will find this monograph beneficial in their studies.


Handbook of Manufacturing Systems and Design

Handbook of Manufacturing Systems and Design

Author: Uzair Khaleeq uz Zaman

Publisher: CRC Press

Published: 2023-08-24

Total Pages: 293

ISBN-13: 1000959872

DOWNLOAD EBOOK

This book provides a comprehensive overview of manufacturing systems, their role in product/process design, and their interconnection with an Industry 4.0 perspective, especially related to design, manufacturing, and operations. Handbook of Manufacturing Systems and Design: An Industry 4.0 Perspective provides the knowledge related to the theories and concepts of Industry 4.0. It focuses on the different types of manufacturing systems in Industry 4.0 along with associated design, and control strategies. It concentrates on the operations in Industry 4.0 with a particular focus on supply chain, logistics, risk management, and reverse engineering perspectives. Offering basic concepts and applications through to advanced topics, the handbook feeds into the goal of being a source of knowledge as well as a vehicle to explore the future possibilities of design, techniques, methods, and operations associated with Industry 4.0. Concepts with practical applications in the form of case studies are added to each chapter to round out the many attributes this handbook offers. This handbook targets students, engineers, managers, designers, and manufacturers, and will assist in their understanding of the core concepts of manufacturing systems in connection with Industry 4.0 and optimize alignment between supply and demand in real time for effective implementation of the design concepts.