Decidability of Parameterized Verification

Decidability of Parameterized Verification

Author: Roderick Bloem

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 158

ISBN-13: 3031020111

DOWNLOAD EBOOK

While the classic model checking problem is to decide whether a finite system satisfies a specification, the goal of parameterized model checking is to decide, given finite systems (n) parameterized by n ∈ N, whether, for all n ∈ N, the system (n) satisfies a specification. In this book we consider the important case of (n) being a concurrent system, where the number of replicated processes depends on the parameter n but each process is independent of n. Examples are cache coherence protocols, networks of finite-state agents, and systems that solve mutual exclusion or scheduling problems. Further examples are abstractions of systems, where the processes of the original systems actually depend on the parameter. The literature in this area has studied a wealth of computational models based on a variety of synchronization and communication primitives, including token passing, broadcast, and guarded transitions. Often, different terminology is used in the literature, and results are based on implicit assumptions. In this book, we introduce a computational model that unites the central synchronization and communication primitives of many models, and unveils hidden assumptions from the literature. We survey existing decidability and undecidability results, and give a systematic view of the basic problems in this exciting research area.


Decidability of Parameterized Verification

Decidability of Parameterized Verification

Author: Roderick Bloem

Publisher: Morgan & Claypool Publishers

Published: 2015-09-30

Total Pages: 170

ISBN-13: 1627057447

DOWNLOAD EBOOK

While the classic model checking problem is to decide whether a finite system satisfies a specification, the goal of parameterized model checking is to decide, given finite systems ??(n) parameterized by n ∈ N, whether, for all n ∈ N, the system ??(n) satisfies a specification. In this book we consider the important case of ??(n) being a concurrent system, where the number of replicated processes depends on the parameter n but each process is independent of n. Examples are cache coherence protocols, networks of finite-state agents, and systems that solve mutual exclusion or scheduling problems. Further examples are abstractions of systems, where the processes of the original systems actually depend on the parameter.


Verification, Model Checking, and Abstract Interpretation

Verification, Model Checking, and Abstract Interpretation

Author: Rayna Dimitrova

Publisher: Springer Nature

Published: 2023-12-29

Total Pages: 361

ISBN-13: 3031505247

DOWNLOAD EBOOK

The two-volume set LNCS 14499 and 14500 constitutes the proceedings of the 25th International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2024, which took place in London, Ontario, Canada, in January 2024. The 30 full papers presented in the proceedings were carefully reviewed and selected from 74 submissions. They were organized in topical sections as follows:Part I: Abstract interpretation; infinite-state systems; model checking and synthesis; SAT, SMT, and automated reasoning; Part II: Concurrency; neural networks; probabilistic and quantum programs; program and system verification; runtime verification; security and privacy.


Parameterized Verification of Synchronized Concurrent Programs

Parameterized Verification of Synchronized Concurrent Programs

Author: Zeinab Ganjei

Publisher: Linköping University Electronic Press

Published: 2021-03-19

Total Pages: 192

ISBN-13: 9179296971

DOWNLOAD EBOOK

There is currently an increasing demand for concurrent programs. Checking the correctness of concurrent programs is a complex task due to the interleavings of processes. Sometimes, violation of the correctness properties in such systems causes human or resource losses; therefore, it is crucial to check the correctness of such systems. Two main approaches to software analysis are testing and formal verification. Testing can help discover many bugs at a low cost. However, it cannot prove the correctness of a program. Formal verification, on the other hand, is the approach for proving program correctness. Model checking is a formal verification technique that is suitable for concurrent programs. It aims to automatically establish the correctness (expressed in terms of temporal properties) of a program through an exhaustive search of the behavior of the system. Model checking was initially introduced for the purpose of verifying finite‐state concurrent programs, and extending it to infinite‐state systems is an active research area. In this thesis, we focus on the formal verification of parameterized systems. That is, systems in which the number of executing processes is not bounded a priori. We provide fully-automatic and parameterized model checking techniques for establishing the correctness of safety properties for certain classes of concurrent programs. We provide an open‐source prototype for every technique and present our experimental results on several benchmarks. First, we address the problem of automatically checking safety properties for bounded as well as parameterized phaser programs. Phaser programs are concurrent programs that make use of the complex synchronization construct of Habanero Java phasers. For the bounded case, we establish the decidability of checking the violation of program assertions and the undecidability of checking deadlock‐freedom. For the parameterized case, we study different formulations of the verification problem and propose an exact procedure that is guaranteed to terminate for some reachability problems even in the presence of unbounded phases and arbitrarily many spawned processes. Second, we propose an approach for automatic verification of parameterized concurrent programs in which shared variables are manipulated by atomic transitions to count and synchronize the spawned processes. For this purpose, we introduce counting predicates that related counters that refer to the number of processes satisfying some given properties to the variables that are directly manipulated by the concurrent processes. We then combine existing works on the counter, predicate, and constrained monotonic abstraction and build a nested counterexample‐based refinement scheme to establish correctness. Third, we introduce Lazy Constrained Monotonic Abstraction for more efficient exploration of well‐structured abstractions of infinite‐state non‐monotonic systems. We propose several heuristics and assess the efficiency of the proposed technique by extensive experiments using our open‐source prototype. Lastly, we propose a sound but (in general) incomplete procedure for automatic verification of safety properties for a class of fault‐tolerant distributed protocols described in the Heard‐Of (HO for short) model. The HO model is a popular model for describing distributed protocols. We propose a verification procedure that is guaranteed to terminate even for unbounded number of the processes that execute the distributed protocol.


Handbook of Model Checking

Handbook of Model Checking

Author: Edmund M. Clarke

Publisher: Springer

Published: 2018-05-18

Total Pages: 1210

ISBN-13: 3319105752

DOWNLOAD EBOOK

Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. The editors and authors of this handbook are among the world's leading researchers in this domain, and the 32 contributed chapters present a thorough view of the origin, theory, and application of model checking. In particular, the editors classify the advances in this domain and the chapters of the handbook in terms of two recurrent themes that have driven much of the research agenda: the algorithmic challenge, that is, designing model-checking algorithms that scale to real-life problems; and the modeling challenge, that is, extending the formalism beyond Kripke structures and temporal logic. The book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools.


Model Checking, second edition

Model Checking, second edition

Author: Edmund M. Clarke, Jr.

Publisher: MIT Press

Published: 2018-12-04

Total Pages: 423

ISBN-13: 0262349450

DOWNLOAD EBOOK

An expanded and updated edition of a comprehensive presentation of the theory and practice of model checking, a technology that automates the analysis of complex systems. Model checking is a verification technology that provides an algorithmic means of determining whether an abstract model—representing, for example, a hardware or software design—satisfies a formal specification expressed as a temporal logic formula. If the specification is not satisfied, the method identifies a counterexample execution that shows the source of the problem. Today, many major hardware and software companies use model checking in practice, for verification of VLSI circuits, communication protocols, software device drivers, real-time embedded systems, and security algorithms. This book offers a comprehensive presentation of the theory and practice of model checking, covering the foundations of the key algorithms in depth. The field of model checking has grown dramatically since the publication of the first edition in 1999, and this second edition reflects the advances in the field. Reorganized, expanded, and updated, the new edition retains the focus on the foundations of temporal logic model while offering new chapters that cover topics that did not exist in 1999: propositional satisfiability, SAT-based model checking, counterexample-guided abstraction refinement, and software model checking. The book serves as an introduction to the field suitable for classroom use and as an essential guide for researchers.


Verification of Data-Aware Processes via Satisfiability Modulo Theories

Verification of Data-Aware Processes via Satisfiability Modulo Theories

Author: Alessandro Gianola

Publisher: Springer Nature

Published: 2023-10-29

Total Pages: 335

ISBN-13: 3031427467

DOWNLOAD EBOOK

This book is a revised version of the PhD dissertation written by the author at the Free University of Bozen-Bolzano in Italy. It presents a new approach to safety verification of a particular class of infinite-state systems, called Data-Aware Processes (DAPs). To do so, the developed technical machinery requires to devise novel results for uniform interpolation and its combination in the context of automated reasoning. These results are then applied to the analysis of concrete business processes enriched with real data. In 2022, the PhD dissertation won the “BPM Dissertation Award”, granted to outstanding PhD theses in the field of Business Process Management.


Verification, Model Checking, and Abstract Interpretation

Verification, Model Checking, and Abstract Interpretation

Author: Byron Cook

Publisher: Springer

Published: 2007-11-13

Total Pages: 395

ISBN-13: 3540697381

DOWNLOAD EBOOK

The book constitutes the refereed proceedings of the 7th International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2007, held in Nice, France in January 2007. This event was co-located with the Symposium on Principles of Programming Languages (POPL 2007). The 21 revised full papers presented together with three invited lectures and three invited tutorials were carefully reviewed and selected from a total of 85 submissions.


Computer Aided Verification

Computer Aided Verification

Author: Daniel Kroening

Publisher: Springer

Published: 2015-07-15

Total Pages: 690

ISBN-13: 3319216902

DOWNLOAD EBOOK

The two-volume set LNCS 9206 and LNCS 9207 constitutes the refereed proceedings of the 27th International Conference on Computer Aided Verification, CAV 2015, held in San Francisco, CA, USA, in July 2015. The total of 58 full and 11 short papers presented in the proceedings was carefully reviewed and selected from 252 submissions. The papers were organized in topical sections named: model checking and refinements; quantitative reasoning; software analysis; lightning talks; interpolation, IC3/PDR, and Invariants; SMT techniques and applications; HW verification; synthesis; termination; and concurrency.


Foundations of Software Science and Computation Structures

Foundations of Software Science and Computation Structures

Author: Patricia Bouyer

Publisher: Springer Nature

Published: 2022-03-28

Total Pages: 471

ISBN-13: 3030992535

DOWNLOAD EBOOK

This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems.