Data Mining with SPSS Modeler

Data Mining with SPSS Modeler

Author: Tilo Wendler

Publisher: Springer Nature

Published: 2021-05-24

Total Pages: 1285

ISBN-13: 3030543382

DOWNLOAD EBOOK

Now in its second edition, this textbook introduces readers to the IBM SPSS Modeler and guides them through data mining processes and relevant statistical methods. Focusing on step-by-step tutorials and well-documented examples that help demystify complex mathematical algorithms and computer programs, it also features a variety of exercises and solutions, as well as an accompanying website with data sets and SPSS Modeler streams. While intended for students, the simplicity of the Modeler makes the book useful for anyone wishing to learn about basic and more advanced data mining, and put this knowledge into practice. This revised and updated second edition includes a new chapter on imbalanced data and resampling techniques as well as an extensive case study on the cross-industry standard process for data mining.


Integration of Data Mining in Business Intelligence Systems

Integration of Data Mining in Business Intelligence Systems

Author: Azevedo, Ana

Publisher: IGI Global

Published: 2014-09-30

Total Pages: 340

ISBN-13: 1466664789

DOWNLOAD EBOOK

Uncovering and analyzing data associated with the current business environment is essential in maintaining a competitive edge. As such, making informed decisions based on this data is crucial to managers across industries. Integration of Data Mining in Business Intelligence Systems investigates the incorporation of data mining into business technologies used in the decision making process. Emphasizing cutting-edge research and relevant concepts in data discovery and analysis, this book is a comprehensive reference source for policymakers, academicians, researchers, students, technology developers, and professionals interested in the application of data mining techniques and practices in business information systems.


SPSS Statistics for Data Analysis and Visualization

SPSS Statistics for Data Analysis and Visualization

Author: Keith McCormick

Publisher: John Wiley & Sons

Published: 2017-05-01

Total Pages: 528

ISBN-13: 1119003555

DOWNLOAD EBOOK

Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These "hidden tools" can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need.


Commercial Data Mining

Commercial Data Mining

Author: David Nettleton

Publisher: Elsevier

Published: 2014-01-29

Total Pages: 361

ISBN-13: 012416658X

DOWNLOAD EBOOK

Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. - Illustrates cost-benefit evaluation of potential projects - Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools - Approachable reference can be read from cover to cover by readers of all experience levels - Includes practical examples and case studies as well as actionable business insights from author's own experience


Data Mining For Dummies

Data Mining For Dummies

Author: Meta S. Brown

Publisher: John Wiley & Sons

Published: 2014-09-29

Total Pages: 422

ISBN-13: 1118893174

DOWNLOAD EBOOK

Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.


Real-world Data Mining

Real-world Data Mining

Author: Dursun Delen

Publisher: Pearson Education

Published: 2015

Total Pages: 289

ISBN-13: 0133551075

DOWNLOAD EBOOK

As business becomes increasingly complex and global, decision-makers must act more rapidly and accurately, based on the best available evidence. Modern data mining and analytics is indispensable for doing this. Real-World Data Mining demystifies current best practices, showing how to use data mining and analytics to uncover hidden patterns and correlations, and leverage these to improve all business decision-making. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, Delen provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: data mining processes, methods, and techniques; the role and management of data; tools and metrics; text and web mining; sentiment analysis; and integration with cutting-edge Big Data approaches. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials.


Data Mining with IBM SPSS Modeler (IBM SPSS Clementine)

Data Mining with IBM SPSS Modeler (IBM SPSS Clementine)

Author: César Pérez

Publisher: Createspace Independent Pub

Published: 2013-06-14

Total Pages: 242

ISBN-13: 9781490440699

DOWNLOAD EBOOK

This book presents the most common techniques used in data mining in a simple and easy to understand through one of the most common software solutions from among those existing in the market, in particular, IBM SPSS CLEMENTINE whose current name is IBM SPSS MODELER. Pursued as initial aim clarifying the applications concerning methods traditionally rated as difficult or dull. It seeks to present applications in data mining without having to manage high mathematical developments or complicated theoretical algorithms, which is the most common reason for the difficulties in understanding and implementation of this matter. Today data mining is used in different fields of science. Noteworthy applications in banking, and financial analysis of markets and trade, insurance and private health, in education, in industrial processes, in medicine, biology and bioengineering, telecommunications and in many other areas. Essentials to get started in data mining, regardless of the field in which it is applied, is the understanding of own concepts, task that does not require nor much less the domain of scientific apparatus involved in the matter. Later, when either necessary operative advanced, computer programs allow the results without having to decipher the mathematical development of the algorithms that are under the procedures. This book describes the simplest possible data mining concepts, so that they are understandable by readers with different training. The chapters begin describing the techniques in affordable language and then presenting the way to treat them through practical applications. An important part of each chapter are case studies completely resolved, including the interpretation of the results, which is precisely the most important thing in any matter with which they work. The book begins with an introduction to mining data and its phases. In successive chapters develop the initial phases (selection of information, data exploration, data cleansing, transformation of data, etc.). Subsequently elaborates on specific data mining, both predictive and descriptive techniques. Predictive techniques covers all models of regression, discriminant analysis, decision trees, neural networks and other techniques based on models. The descriptive techniques vary dimension reduction techniques, techniques of classification and segmentation (clustering), and exploratory data analysis techniques.


IBM SPSS Modeler Cookbook

IBM SPSS Modeler Cookbook

Author: Keith McCormick

Publisher:

Published: 2013-10-24

Total Pages: 0

ISBN-13: 9781849685467

DOWNLOAD EBOOK

This is a practical cookbook with intermediate-advanced recipes for SPSS Modeler data analysts. It is loaded with step-by-step examples explaining the process followed by the experts.If you have had some hands-on experience with IBM SPSS Modeler and now want to go deeper and take more control over your data mining process, this is the guide for you. It is ideal for practitioners who want to break into advanced analytics.


Data Mining Using SAS Enterprise Miner

Data Mining Using SAS Enterprise Miner

Author: Randall Matignon

Publisher: John Wiley & Sons

Published: 2007-08-03

Total Pages: 584

ISBN-13: 0470149019

DOWNLOAD EBOOK

The most thorough and up-to-date introduction to data mining techniques using SAS Enterprise Miner. The Sample, Explore, Modify, Model, and Assess (SEMMA) methodology of SAS Enterprise Miner is an extremely valuable analytical tool for making critical business and marketing decisions. Until now, there has been no single, authoritative book that explores every node relationship and pattern that is a part of the Enterprise Miner software with regard to SEMMA design and data mining analysis. Data Mining Using SAS Enterprise Miner introduces readers to a wide variety of data mining techniques and explains the purpose of-and reasoning behind-every node that is a part of the Enterprise Miner software. Each chapter begins with a short introduction to the assortment of statistics that is generated from the various nodes in SAS Enterprise Miner v4.3, followed by detailed explanations of configuration settings that are located within each node. Features of the book include: The exploration of node relationships and patterns using data from an assortment of computations, charts, and graphs commonly used in SAS procedures A step-by-step approach to each node discussion, along with an assortment of illustrations that acquaint the reader with the SAS Enterprise Miner working environment Descriptive detail of the powerful Score node and associated SAS code, which showcases the important of managing, editing, executing, and creating custom-designed Score code for the benefit of fair and comprehensive business decision-making Complete coverage of the wide variety of statistical techniques that can be performed using the SEMMA nodes An accompanying Web site that provides downloadable Score code, training code, and data sets for further implementation, manipulation, and interpretation as well as SAS/IML software programming code This book is a well-crafted study guide on the various methods employed to randomly sample, partition, graph, transform, filter, impute, replace, cluster, and process data as well as interactively group and iteratively process data while performing a wide variety of modeling techniques within the process flow of the SAS Enterprise Miner software. Data Mining Using SAS Enterprise Miner is suitable as a supplemental text for advanced undergraduate and graduate students of statistics and computer science and is also an invaluable, all-encompassing guide to data mining for novice statisticians and experts alike.


Managing the New Customer Relationship

Managing the New Customer Relationship

Author: Ian Gordon

Publisher: John Wiley & Sons

Published: 2013-03-21

Total Pages: 227

ISBN-13: 1118255852

DOWNLOAD EBOOK

Praise for MANAGING THE NEW CUSTOMER RELATIONSHIP “Gordon delivers an impressive synthesis of the newest methods for engaging customers in relationships that last. No organization today can succeed without the mastery of customer relationship management strategy fundamentals. But to win in the decades ahead, you must also understand and capitalize on the rapidly evolving social computing, mobility and customer analytics technologies described in this book. Checklists, self-assessments and graphical frameworks deliver pragmatic value for the practicing manager.” — William Band, Vice-President, Principal Analyst, Forrester Research Inc., Cambridge, MA