Data-Driven Optimization of Manufacturing Processes

Data-Driven Optimization of Manufacturing Processes

Author: Kalita, Kanak

Publisher: IGI Global

Published: 2020-12-25

Total Pages: 298

ISBN-13: 1799872084

DOWNLOAD EBOOK

All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.


Probably Approximately Correct

Probably Approximately Correct

Author: Leslie Valiant

Publisher: Basic Books (AZ)

Published: 2013-06-04

Total Pages: 210

ISBN-13: 0465032710

DOWNLOAD EBOOK

Presenting a theory of the theoryless, a computer scientist provides a model of how effective behavior can be learned even in a world as complex as our own, shedding new light on human nature.


Data-Driven Prediction for Industrial Processes and Their Applications

Data-Driven Prediction for Industrial Processes and Their Applications

Author: Jun Zhao

Publisher: Springer

Published: 2018-08-20

Total Pages: 453

ISBN-13: 3319940511

DOWNLOAD EBOOK

This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals within the machine learning and data analysis and mining communities.


Dynamic Mode Decomposition

Dynamic Mode Decomposition

Author: J. Nathan Kutz

Publisher: SIAM

Published: 2016-11-23

Total Pages: 241

ISBN-13: 1611974496

DOWNLOAD EBOOK

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.


Optimization of Manufacturing Processes

Optimization of Manufacturing Processes

Author: Kapil Gupta

Publisher: Springer

Published: 2019-06-25

Total Pages: 237

ISBN-13: 3030196380

DOWNLOAD EBOOK

This book provides a detailed understanding of optimization methods as they are implemented in a variety of manufacturing, fabrication and machining processes. It covers the implementation of statistical methods, multi-criteria decision making methods and evolutionary techniques for single and multi-objective optimization to improve quality, productivity, and sustainability in manufacturing. It reports on the theoretical aspects, special features, recent research and latest development in the field. Optimization of Manufacturing Processes is a valuable source of information for researchers and practitioners, as it fills the gap where no dedicated book is available on intelligent manufacturing/modeling and optimization in manufacturing. Readers will develop an understanding of the implementation of statistical and evolutionary techniques for modeling and optimization in manufacturing.


Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems

Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems

Author: Steven X. Ding

Publisher: Springer Science & Business Media

Published: 2014-04-12

Total Pages: 306

ISBN-13: 1447164105

DOWNLOAD EBOOK

Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and demonstrated on industrial case systems. Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems will be of interest to process and control engineers, engineering students and researchers with a control engineering background.


Process Optimization

Process Optimization

Author: Enrique del Castillo

Publisher: Springer Science & Business Media

Published: 2007-09-14

Total Pages: 462

ISBN-13: 0387714359

DOWNLOAD EBOOK

This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.


Process Oriented Analysis

Process Oriented Analysis

Author: Urs B. Meyer

Publisher: CRC Press

Published: 2006-09-18

Total Pages: 536

ISBN-13: 142000767X

DOWNLOAD EBOOK

In modern manufacturing, it is not simply the equipment that is increasingly complex but rather the entire business system in which a company operates. Convoluted supply chains, complicated resource flows, advanced information systems: all must be taken into account when designing or reengineering a manufacturing system. Introducing a powerful yet


Modeling, Optimization, and Control of Zinc Hydrometallurgical Purification Process

Modeling, Optimization, and Control of Zinc Hydrometallurgical Purification Process

Author: Chunhua Yang

Publisher: Academic Press

Published: 2021-01-23

Total Pages: 246

ISBN-13: 0128207299

DOWNLOAD EBOOK

Modeling, Optimization and Control of Zinc Hydrometallurgical Purification Process provides a clear picture on how to develop a mathematical model for complex industrial processes, how to design the optimization strategy, and how to apply control methods in order to achieve desired production target. This book shares the authors' recent ideas/methodologies/algorithms on the intelligent manufacturing of complex industry processes, e.g., how to develop a descriptive framework which could enable the digitalization and visualization of a process and how to develop the controller when the process model is not available. - Presents an extended state-space descriptive framework for complex industrial processes - Presents scientific problems extracted from real industrial process - Proposes novel modeling and control tools for intelligent manufacturing of continuous industries


Dynamic Process Modeling

Dynamic Process Modeling

Author:

Publisher: John Wiley & Sons

Published: 2013-10-02

Total Pages: 628

ISBN-13: 3527631348

DOWNLOAD EBOOK

Inspired by the leading authority in the field, the Centre for Process Systems Engineering at Imperial College London, this book includes theoretical developments, algorithms, methodologies and tools in process systems engineering and applications from the chemical, energy, molecular, biomedical and other areas. It spans a whole range of length scales seen in manufacturing industries, from molecular and nanoscale phenomena to enterprise-wide optimization and control. As such, this will appeal to a broad readership, since the topic applies not only to all technical processes but also due to the interdisciplinary expertise required to solve the challenge. The ultimate reference work for years to come.