Biomolecular Networks

Biomolecular Networks

Author: Luonan Chen

Publisher: John Wiley & Sons

Published: 2009-06-29

Total Pages: 416

ISBN-13: 9780470488058

DOWNLOAD EBOOK

Alternative techniques and tools for analyzing biomolecular networks With the recent rapid advances in molecular biology, high-throughput experimental methods have resulted in enormous amounts of data that can be used to study biomolecular networks in living organisms. With this development has come recognition of the fact that a complicated living organism cannot be fully understood by merely analyzing individual components. Rather, it is the interactions of components or biomolecular networks that are ultimately responsible for an organism's form and function. This book addresses the important need for a new set of computational tools to reveal essential biological mechanisms from a systems biology approach. Readers will get comprehensive coverage of analyzing biomolecular networks in cellular systems based on available experimental data with an emphasis on the aspects of network, system, integration, and engineering. Each topic is treated in depth with specific biological problems and novel computational methods: GENE NETWORKS—Transcriptional regulation; reconstruction of gene regulatory networks; and inference of transcriptional regulatory networks PROTEIN INTERACTION NETWORKS—Prediction of protein-protein interactions; topological structure of biomolecular networks; alignment of biomolecular networks; and network-based prediction of protein function METABOLIC NETWORKS AND SIGNALING NETWORKS—Analysis, reconstruction, and applications of metabolic networks; modeling and inference of signaling networks; and other topics and new trends In addition to theoretical results and methods, many computational software tools are referenced and available from the authors' Web sites. Biomolecular Networks is an indispensable reference for researchers and graduate students in bioinformatics, computational biology, systems biology, computer science, and applied mathematics.


Modeling Biomolecular Networks in Cells

Modeling Biomolecular Networks in Cells

Author: Luonan Chen

Publisher: Springer Science & Business Media

Published: 2010-07-05

Total Pages: 343

ISBN-13: 1849962146

DOWNLOAD EBOOK

Modeling Biomolecular Networks in Cells shows how the interaction between the molecular components of basic living organisms can be modelled mathematically and the models used to create artificial biological entities within cells. Such forward engineering is a difficult task but the nonlinear dynamical methods espoused in this book simplify the biology so that it can be successfully understood and the synthesis of simple biological oscillators and rhythm-generators made feasible. Such simple units can then be co-ordinated using intercellular signal biomolecules. The formation of such man-made multicellular networks with a view to the production of biosensors, logic gates, new forms of integrated circuitry based on "gene-chips" and even biological computers is an important step in the design of faster and more flexible "electronics". The book also provides theoretical frameworks and tools with which to analyze the nonlinear dynamical phenomena which arise from the connection of building units in a biomolecular network.


Modeling and Analysis of Bio-molecular Networks

Modeling and Analysis of Bio-molecular Networks

Author: Jinhu Lü

Publisher: Springer Nature

Published: 2020-12-06

Total Pages: 464

ISBN-13: 981159144X

DOWNLOAD EBOOK

This book addresses a number of questions from the perspective of complex systems: How can we quantitatively understand the life phenomena? How can we model life systems as complex bio-molecular networks? Are there any methods to clarify the relationships among the structures, dynamics and functions of bio-molecular networks? How can we statistically analyse large-scale bio-molecular networks? Focusing on the modeling and analysis of bio-molecular networks, the book presents various sophisticated mathematical and statistical approaches. The life system can be described using various levels of bio-molecular networks, including gene regulatory networks, and protein-protein interaction networks. It first provides an overview of approaches to reconstruct various bio-molecular networks, and then discusses the modeling and dynamical analysis of simple genetic circuits, coupled genetic circuits, middle-sized and large-scale biological networks, clarifying the relationships between the structures, dynamics and functions of the networks covered. In the context of large-scale bio-molecular networks, it introduces a number of statistical methods for exploring important bioinformatics applications, including the identification of significant bio-molecules for network medicine and genetic engineering. Lastly, the book describes various state-of-art statistical methods for analysing omics data generated by high-throughput sequencing. This book is a valuable resource for readers interested in applying systems biology, dynamical systems or complex networks to explore the truth of nature.


Handbook on Biological Networks

Handbook on Biological Networks

Author: Stefano Boccaletti

Publisher: World Scientific

Published: 2010

Total Pages: 465

ISBN-13: 9812838791

DOWNLOAD EBOOK

Networked systems are all around us. The accumulated evidence of systems as complex as a cell cannot be fully understood by studying only their isolated constituents, giving rise to a new area of interest in research ? the study of complex networks. In a broad sense, biological networks have been one of the most studied networks, and the field has benefited from many important contributions. By understanding and modeling the structure of a biological network, a better perception of its dynamical and functional behavior is to be expected. This unique book compiles the most relevant results and novel insights provided by network theory in the biological sciences, ranging from the structure and dynamics of the brain to cellular and protein networks and to population-level biology.


Fundamentals of Complex Networks

Fundamentals of Complex Networks

Author: Guanrong Chen

Publisher: John Wiley & Sons

Published: 2015-06-29

Total Pages: 384

ISBN-13: 1118718119

DOWNLOAD EBOOK

Complex networks such as the Internet, WWW, transportation networks, power grids, biological neural networks, and scientific cooperation networks of all kinds provide challenges for future technological development. • The first systematic presentation of dynamical evolving networks, with many up-to-date applications and homework projects to enhance study • The authors are all very active and well-known in the rapidly evolving field of complex networks • Complex networks are becoming an increasingly important area of research • Presented in a logical, constructive style, from basic through to complex, examining algorithms, through to construct networks and research challenges of the future


Bioinformatics Research and Applications

Bioinformatics Research and Applications

Author: Mitra Basu

Publisher: Springer

Published: 2014-06-23

Total Pages: 424

ISBN-13: 3319081713

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 10th International Symposium on Bioinformatics Research and Applications, ISBRA 2014, held in Zhangjiajie, China, in June 2014. The 33 revised full papers and 31 one-page abstracts included in this volume were carefully reviewed and selected from 119 submissions. The papers cover a wide range of topics in bioinformatics and computational biology and their applications including the development of experimental or commercial systems.


Biological Data Mining

Biological Data Mining

Author: Jake Y. Chen

Publisher: CRC Press

Published: 2009-09-01

Total Pages: 736

ISBN-13: 1420086855

DOWNLOAD EBOOK

Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplin


Network Bioscience, 2nd Edition

Network Bioscience, 2nd Edition

Author: Marco Pellegrini

Publisher: Frontiers Media SA

Published: 2020-03-27

Total Pages: 270

ISBN-13: 288963650X

DOWNLOAD EBOOK

Network science has accelerated a deep and successful trend in research that influences a range of disciplines like mathematics, graph theory, physics, statistics, data science and computer science (just to name a few) and adapts the relevant techniques and insights to address relevant but disparate social, biological, technological questions. We are now in an era of 'big biological data' supported by cost-effective high-throughput genomic, transcriptomic, proteomic, metabolomic data collection techniques that allow one to take snapshots of the cells' molecular profiles in a systematic fashion. Moreover recently, also phenotypic data, data on diseases, symptoms, patients, etc. are being collected at nation-wide level thus giving us another source of highly related (causal) 'big data'. This wealth of data is usually modeled as networks (aka binary relations, graphs or webs) of interactions, (including protein-protein, metabolic, signaling and transcription-regulatory interactions). The network model is a key view point leading to the uncovering of mesoscale phenomena, thus providing an essential bridge between the observable phenotypes and 'omics' underlying mechanisms. Moreover, network analysis is a powerful 'hypothesis generation' tool guiding the scientific cycle of 'data gathering', 'data interpretation, 'hypothesis generation' and 'hypothesis testing'. A major challenge in contemporary research is the synthesis of deep insights coming from network science with the wealth of data (often noisy, contradictory, incomplete and difficult to replicate) so to answer meaningful biological questions, in a quantifiable way using static and dynamic properties of biological networks.


Systems Medicine

Systems Medicine

Author:

Publisher: Academic Press

Published: 2020-08-24

Total Pages: 1571

ISBN-13: 0128160780

DOWNLOAD EBOOK

Technological advances in generated molecular and cell biological data are transforming biomedical research. Sequencing, multi-omics and imaging technologies are likely to have deep impact on the future of medical practice. In parallel to technological developments, methodologies to gather, integrate, visualize and analyze heterogeneous and large-scale data sets are needed to develop new approaches for diagnosis, prognosis and therapy. Systems Medicine: Integrative, Qualitative and Computational Approaches is an innovative, interdisciplinary and integrative approach that extends the concept of systems biology and the unprecedented insights that computational methods and mathematical modeling offer of the interactions and network behavior of complex biological systems, to novel clinically relevant applications for the design of more successful prognostic, diagnostic and therapeutic approaches. This 3 volume work features 132 entries from renowned experts in the fields and covers the tools, methods, algorithms and data analysis workflows used for integrating and analyzing multi-dimensional data routinely generated in clinical settings with the aim of providing medical practitioners with robust clinical decision support systems. Importantly the work delves into the applications of systems medicine in areas such as tumor systems biology, metabolic and cardiovascular diseases as well as immunology and infectious diseases amongst others. This is a fundamental resource for biomedical students and researchers as well as medical practitioners who need to need to adopt advances in computational tools and methods into the clinical practice. Encyclopedic coverage: ‘one-stop’ resource for access to information written by world-leading scholars in the field of Systems Biology and Systems Medicine, with easy cross-referencing of related articles to promote understanding and further research Authoritative: the whole work is authored and edited by recognized experts in the field, with a range of different expertise, ensuring a high quality standard Digitally innovative: Hyperlinked references and further readings, cross-references and diagrams/images will allow readers to easily navigate a wealth of information


Integrative Omics

Integrative Omics

Author: Manish Kumar Gupta

Publisher: Elsevier

Published: 2024-05-03

Total Pages: 434

ISBN-13: 0443160937

DOWNLOAD EBOOK

Integrative Omics: Concepts, Methodology and Applications provides a holistic and integrated view of defining and applying network approaches, integrative tools, and methods to solve problems for the rationalization of genotype to phenotype relationships. The reference includes a range of chapters in a systemic 'step by step' manner, which begins with the basic concepts from Omic to Multi Integrative Omics approaches, followed by their full range of approaches, applications, emerging trends, and future trends. All key areas of Omics are covered including biological databases, sequence alignment, pharmacogenomics, nutrigenomics and microbial omics, integrated omics for Food Science and Identification of genes associated with disease, clinical data integration and data warehousing, translational omics as well as omics technology policy and society research. Integrative Omics: Concepts, Methodology and Applications highlights the recent concepts, methodologies, advancements in technologies and is also well-suited for researchers from both academic and industry background, undergraduate and graduate students who are mainly working in the area of computational systems biology, integrative omics and translational science. The book bridges the gap between biological sciences, physical sciences, computer science, statistics, data science, information technology and mathematics by presenting content specifically dedicated to mathematical models of biological systems. - Provides a holistic, integrated view of a defining and applying network approach, integrative tools, and methods to solve problems for rationalization of genotype to phenotype relationships - Offers an interdisciplinary approach to Databases, data analytics techniques, biological tools, network construction, analysis, modeling, prediction and simulation of biological systems leading to 'translational research', i.e., drug discovery, drug target prediction, and precision medicine - Covers worldwide methods, concepts, databases, and tools used in the construction of integrated pathways