In the 8th book of Dr. Ahuja’s innovative “Advances in Agricultural Systems Modeling” series, authors give a look into the future of climatesmart agricultural systems, emphasizing the integration of soil, weather, vegetation and management information to predict relevant agro-ecosystem processes. Expansion of data availability, improvement of sensors, and computational power have opened opportunities in modeling and exploration of management impact. Authors give a background on model development and explain soil, plant, and climate processes and their interactions that encompass the wide range of applications of simulation models to address challenges in managing our resources and complex agricultural systems.
Neural network; Computer vision and imaging; greenhouse control; Precision agriculture; Computer modeling; Geographic information system; Dairy and animal production systems; Equipmento automation, instrumentation and control; Computer training and distance education; Information delivery and data management system; Expert and decision support systems; Internet/networking applications; Computer strategies/policy; Water management.
This publication comes with computer software and presents a comprehensive simulation model designed to predict the hydrologic response, including potential for surface and groundwater contamination, of alternative crop-management systems. It simulates crop development and the movement of water, nutrients and pesticides over and through the root zone for a representative unit area of an agricultural field over multiple years. The model allows simulation of a wide spectrum of management practices and scenarios with special features such as the rapid transport of surface-applied chemicals through macropores to deeper depths and the preferential transport of chemicals within the soil matrix via mobile-immobile zones. The transfer of surface-applied chemicals (pesticides in particular) to runoff water is also an important component.
This book gathers the latest advances, innovations, and applications in the field of innovative biosystems engineering for sustainable agriculture, forestry and food production. Focusing on the challenges of implementing sustainability in various contexts in the fields of biosystems engineering, it shows how the research has addressed the sustainable use of renewable and non-renewable resources. It also presents possible solutions to help achieve sustainable production. The Mid-Term Conference of the Italian Association of Agricultural Engineering (AIIA) is part of a series of conferences, seminars and meetings that the AIIA organizes, together with other public and private stakeholders, to promote the creation and dissemination of new knowledge in the sector. The contributions included in the book were selected by means of a rigorous peer-review process, and offer an extensive and multidisciplinary overview of interesting solutions in the field of innovative biosystems engineering for sustainable agriculture.
This book is a comprehensive volume dealing with climate change impacts on agriculture, and which can help guide the redesign of agricultural management and cropping systems. It includes mitigation techniques such as use of bioenergy crops, fertilizer and manure management, conservation tillage, crop rotations, cover crops and cropping intensity, irrigation, erosion control, management of drained wetlands, lime amendments, residue management, biochar and biotechnology. It also includes Management of GHG emissions Crop models as decision support tools QTL analysis Crop water productivity Impacts of drought on cereal crops Silvopastoral systems Changing climate impact on wheat-based cropping systems of South Asia Phosphorous dynamics under changing climate Role of bioinformatics The focus of the book is climate change mitigation to enhance sustainability in agriculture. We present various kinds of mitigation options, ways to minimize GHG emissions and better use of the latest techniques in conservation and environmental-sustainability.
This comprehensive guide to potato production systems management contains 20 chapters and more than 350 color photographs. Beginning with the history of potato culture, it spans all aspects of potato production, pest and planting management, storage, and marketing. Written by a team of over 35 scientists from North America, this book offers updated research-based information and serves as a unique, valuable tool for researchers, extension specialists, students, and farm managers. More than a description of principles, it contains practical analytical tools, charts, and methods to create guidelines for best production practices and cost estimates. Some key areas include: Potato Growth and Development, Potato Variety Selection and Management, Seed and Planting Management, Seed Production and Certification, Field Selection, Crop Rotation, and Soil Management, Integrated Pest Management for Potatoes, Potato Nutrient Management, Irrigation Management, Tuber Quality, Economics and Marketing, Production Costs, among others. Potato Production Systems should be a valuable reference for successful culture of the "noble tuber."
Fully renewed and extended, this edition is a valuable source of information for anyone involved in drainage engineering and management. It provides new theories, technologies, knowledge and experiences in combination with traditional land development practices in the humid temperature zone. Aspects covered include: management and maintenance; drainage application and design; and adverse impacts on the environment. Intended as both a handbook and a textbook, this work is of particular value to university students as well as professionals within drainage development, engineering and management.
This book addresses in detail multifaceted approaches to boosting nutrient use efficiency (NUE) that are modified by plant interactions with environmental variables and combine physiological, microbial, biotechnological and agronomic aspects. Conveying an in-depth understanding of the topic will spark the development of new cultivars and strains to induce NUE, coupled with best management practices that will immensely benefit agricultural systems, safeguarding their soil, water, and air quality. Written by recognized experts in the field, the book is intended to provide students, scientists and policymakers with essential insights into holistic approaches to NUE, as well as an overview of some successful case studies. In the present understanding of agriculture, NUE represents a question of process optimization in response to the increasing fragility of our natural resources base and threats to food grain security across the globe. Further improving nutrient use efficiency is a prerequisite to reducing production costs, expanding crop acreage into non-competitive marginal lands with low nutrient resources, and preventing environmental contamination. The nutrients most commonly limiting plant growth are N, P, K, S and micronutrients like Fe, Zn, B and Mo. NUE depends on the ability to efficiently take up the nutrient from the soil, but also on transport, storage, mobilization, usage within the plant and the environment. A number of approaches can help us to understand NUE as a whole. One involves adopting best crop management practices that take into account root-induced rhizosphere processes, which play a pivotal role in controlling nutrient dynamics in the soil-plant-atmosphere continuum. New technologies, from basic tools like leaf color charts to sophisticated sensor-based systems and laser land leveling, can reduce the dependency on laboratory assistance and manual labor. Another approach concerns the development of crop plants through genetic manipulations that allow them to take up and assimilate nutrients more efficiently, as well as identifying processes of plant responses to nutrient deficiency stress and exploring natural genetic variation. Though only recently introduced, the ability of microbial inoculants to induce NUE is gaining in importance, as the loss, immobilization, release and availability of nutrients are mediated by soil microbial processes.
Mapping Forestry describes how geographic information system (GIS) software supports the business of forestry in today's era of economic changes, increased global competition, and diminishing resources. In twenty scenarios from the United States, Germany, Brazil, Romania, Finland, and Cambodia, foresters share how they use GIS to manage commercial operations and sustainable stewardship. Forest managers tell how computer-generated maps and GIS analysis help them determine the best places to build roads, whether logging in a particular area is commercially feasible, which fire-damaged areas should be restored first, and more. Mapping Forestry contains 20 chapters of full-color maps, featuring detailed descriptions of the types of GIS analysis that they represent, making it an excellent tool for forestry professionals.