Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces

Assemblies of Gold Nanoparticles at Liquid-Liquid Interfaces

Author: Evgeny Smirnov

Publisher: Springer

Published: 2018-04-19

Total Pages: 270

ISBN-13: 3319779141

DOWNLOAD EBOOK

This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, Chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field.


Polymer Science: A Comprehensive Reference

Polymer Science: A Comprehensive Reference

Author:

Publisher: Newnes

Published: 2012-12-05

Total Pages: 7752

ISBN-13: 0080878628

DOWNLOAD EBOOK

The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)


Recent Advances in Nanoscience and Technology

Recent Advances in Nanoscience and Technology

Author: Sunil Kumar Bajpai

Publisher: Bentham Science Publishers

Published: 2009-07

Total Pages: 92

ISBN-13: 160805053X

DOWNLOAD EBOOK

"The present Ebook deals with various strategies that have frequently been followed to fabricate nanostructures of required size and shape, and with required functionalities to enable them to be used in a wide spectrum of industrial, biomedical and technol"


Advances in Nanotechnology Research and Application: 2011 Edition

Advances in Nanotechnology Research and Application: 2011 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-01-09

Total Pages: 8760

ISBN-13: 1464920583

DOWNLOAD EBOOK

Advances in Nanotechnology Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Comprehensive Nanoscience and Technology

Comprehensive Nanoscience and Technology

Author:

Publisher: Academic Press

Published: 2010-10-29

Total Pages: 2785

ISBN-13: 0123743966

DOWNLOAD EBOOK

From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.


21st Century Nanoscience

21st Century Nanoscience

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2022-01-18

Total Pages: 4153

ISBN-13: 1351260553

DOWNLOAD EBOOK

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.


Advances in Nanotechnology Research and Application: 2012 Edition

Advances in Nanotechnology Research and Application: 2012 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-12-26

Total Pages: 14170

ISBN-13: 1464990468

DOWNLOAD EBOOK

Advances in Nanotechnology Research and Application / 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application / 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application / 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Generation of Polymers and Nanomaterials at Liquid-Liquid Interfaces

Generation of Polymers and Nanomaterials at Liquid-Liquid Interfaces

Author: Panagiotis Dallas

Publisher: Elsevier

Published: 2020-07-28

Total Pages: 226

ISBN-13: 0128195053

DOWNLOAD EBOOK

Generation of Polymers and Nanomaterials at Liquid-Liquid Interfaces: Application to Crystalline, Light Emitting, and Energy Materials, Second Edition is an innovative guide to the synthesis and processing of materials through liquid-liquid interfaces. This second edition has been revised and expanded, with a new chapter on light emitting materials and increased emphasis towards applications. The book aims to highlight the versatility of the interface between two liquids, providing a unique environment for synthesizing materials with highly tuned, desirable properties. In this revised and expanded second edition, the advanced applications of the synthesized materials and the two-phase systems are highlighted, with real potential within flexible electronics, energy storage, enhanced oil recovery, and sensors. This is supported by detailed coverage of interfacial processes and the fundamental physical chemistry behind them. The first two chapters provide an overview of interfaces in natural and biological systems, and outline the fundamental properties of the interface. Chapters 3 and 4 are devoted to the synthesis and self-organization of nanoparticles and polymers through interfacial systems. The synthesis of conductive, fluorescent and conventional polymers and their properties are extensively covered. Chapters 5 and 6 focus on novel applications. This book is of interest to researchers, scientists, and advanced students, in polymer synthesis, polymer chemistry, polymer science, nanomaterials and nanotechnology, polymer composites, materials science, energy, flexible electronics, and chemical engineering. In industry, this supports scientists, R&D, and other professionals, working with polymeric materials for applications in energy, electronics, sensors, and oil & gas. - Provides new ideas for the design of fluorescent polymers, conductive polymers, nanoparticle arrays, thin films, and novel 2D materials - Includes detailed coverage of synthesis and processing of polymers and nanomaterials at liquid-liquid interfaces - Explores state-of-the-art applications across flexible electronics, energy storage, enhanced oil recovery, and sensors


Smart Nanocontainers

Smart Nanocontainers

Author: Phuong Nguyen Tri

Publisher: Elsevier

Published: 2019-11-08

Total Pages: 566

ISBN-13: 0128168919

DOWNLOAD EBOOK

Smart Nanocontainers explores the fundamental concepts and emerging applications of nanocontainers in biomedicine, pharmaceuticals and smart materials. In pharmaceuticals, nanocontainers have advantages over their micro-counterparts, including more efficient drug detoxification, higher intracellular uptake, better stability, less side effects and higher biocompatibility with tissue and cells. In materials science, such as coating technology, they help by making coatings smarter, stronger and more durable. This important reference will help anyone who wants to learn more on how nanocontainers are used to provide the controlled release of active agents, including their applications in smart coatings, corrosion, drug delivery, diagnosis, agri-food and gas storage. - Discusses how the molecular design of nanocarriers can be optimized to increase performance - Explores how nanocarriers are being used to produce a new generation of active coatings - Explains how nanocarriers are being used to deliver more effective nanoscale drug delivery


21st Century Nanoscience – A Handbook

21st Century Nanoscience – A Handbook

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2020-11-09

Total Pages: 485

ISBN-13: 1000710157

DOWNLOAD EBOOK

21st Century Nanoscience - A Handbook: Low-Dimensional Materials and Morphologies (Volume 4) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This fourth volume in a ten-volume set covers low-dimensional materials and morphologies. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.