Tackling the realities of the antimicrobial resistance (AMR) situation today is no longer uncommon. Many battles have been fought in the past since the discovery of antibiotics between man and microbes. In the tussle of new antibiotic modifications, the transmission of resistant genes, both vertically and horizontally unveils yet another resistant attribute for the microbe, for it only to be faced with a more powerful, wide spectrum antibiotic; the cycle continues-and the winner is yet to be known. This book aims to provide some insight into various molecular mechanisms, agricultural mitigation methods, and the One Health applications to maybe, just maybe, tip the scales towards us.
Antimicrobial resistance is recognised among the world’s most challenging problems. Despite its global spread, Africa, specifically sub-Saharan Africa, is the most affected by this malaise. Poor living conditions and inadequate access to sanitation and potable water supplies are among contributing factors that have influenced a high disease burden on the continent, requiring extensive antimicrobials. Weak health systems and the absence of firm policies further aggravate the problem, as the use of antimicrobials is mostly unregulated. The increasing demand for animal protein to meet the starving populations’ demands has also influenced the use of these antimicrobials, including those banned on other continents, for food animal production. The ripple effect of indiscriminate use in humans and animals is the massive discharge of antimicrobials, their residues, antimicrobial-resistant microorganisms and their associated genes into the environment. This 14-chapter unique masterpiece presents the AMR problem in African, addressing the various compartments of the One Health – humans, animals, and the environment, to illustrate the need for concerted efforts in the fight against AMR, especially in Africa. Authors from the four cardinal points present diverse aspects of AMR in Africa, starting with behavioural and social drivers of AMR in Africa. Antimicrobial stewardship in an African context is also discussed. AMR in humans is presented through studies on antibiotic-resistant neonates and nontyphoidal Salmonella infections and the clinical relevance of the genetics of viral resistance. Topics on AMR in mastitis, biosecurity in animal farming and the linkage between disinfectants and AMR are discussed. The environmental dimension of AMR is discussed, notably in the aquatic environment, and its implication for aquaculture and irrigation and using nanomaterials to treat polluted waters from such environments are highlighted. Finally, Africa’s rich floral diversity is portrayed as an eco-friendly and cost-effective approach to combat AMR. Hopefully, the work presented will spur greater collaboration between scientists, environmental, animal and human health practitioners, the general population, and policymakers to assimilate and implement the One Health approach to combating AMR, rather than working in silos on their various sectors
Avoiding infection has always been expensive. Some human populations escaped tropical infections by migrating into cold climates but then had to procure fuel, warm clothing, durable housing, and crops from a short growing season. Waterborne infections were averted by owning your own well or supporting a community reservoir. Everyone got vaccines in rich countries, while people in others got them later if at all. Antimicrobial agents seemed at first to be an exception. They did not need to be delivered through a cold chain and to everyone, as vaccines did. They had to be given only to infected patients and often then as relatively cheap injectables or pills off a shelf for only a few days to get astonishing cures. Antimicrobials not only were better than most other innovations but also reached more of the world’s people sooner. The problem appeared later. After each new antimicrobial became widely used, genes expressing resistance to it began to emerge and spread through bacterial populations. Patients infected with bacteria expressing such resistance genes then failed treatment and remained infected or died. Growing resistance to antimicrobial agents began to take away more and more of the cures that the agents had brought.
This book fills this gap by offering a much needed political economy analysis of One Health research and policy. Through ethnographic, qualitative and quantitative data, the book draws together a diverse number of case studies. These include chapters exploring global narratives about One Health operationalization and prevailing institutional bottlenecks; the evolution of research networks over time; and the histories and politics behind conflicting disease control approaches. The themes from these chapters are further contextualized and expanded upon through country-specific case studies exploring the translation of One Health research and policy into the African context.
In October 1999, the Forum on Emerging Infections of the Institute of Medicine convened a two-day workshop titled "International Aspects of Emerging Infections." Key representatives from the international community explored the forces that drive emerging infectious diseases to prominence. Representatives from the Americas, Africa, Asia and the Pacific, and Europe made formal presentations and engaged in panel discussions. Emerging Infectious Diseases from the Global to the Local Perspective includes summaries of the formal presentations and suggests an agenda for future action. The topics addressed cover a wide range of issues, including trends in the incidence of infectious diseases around the world, descriptions of the wide variety of factors that contribute to the emergence and reemergence of these diseases, efforts to coordinate surveillance activities and responses within and across borders, and the resource, research, and international needs that remain to be addressed.
WHO has launched new guidelines on use of medically important antimicrobials in food-producing animals, recommending that farmers and the food industry stop using antibiotics routinely to promote growth and prevent disease in healthy animals. These guidelines aim to help preserve the effectiveness of antibiotics that are important for human medicine by reducing their use in animals.
Emerging infectious diseases are often due to environmental disruption, which exposes microbes to a different niche that selects for new virulence traits and facilitates transmission between animals and humans. Thus, health of humans also depends upon health of animals and the environment – a concept called One Health. This book presents core concepts, compelling evidence, successful applications, and remaining challenges of One Health approaches to thwarting the threat of emerging infectious disease. Written by scientists working in the field, this book will provide a series of "stories" about how disruption of the environment and transmission from animal hosts is responsible for emerging human and animal diseases. Explains the concept of One Health and the history of the One Health paradigm shift. Traces the emergence of devastating new diseases in both animals and humans. Presents case histories of notable, new zoonoses, including West Nile virus, hantavirus, Lyme disease, SARS, and salmonella. Links several epidemic zoonoses with the environmental factors that promote them. Offers insight into the mechanisms of microbial evolution toward pathogenicity. Discusses the many causes behind the emergence of antibiotic resistance. Presents new technologies and approaches for public health disease surveillance. Offers political and bureaucratic strategies for promoting the global acceptance of One Health.
"In May 2015, the Sixty-eighth World Health Assembly adopted the Global action plan on antimicrobial resistance, which reflects the global consensus that AMR poses a profound threat to human health. One of the five strategic objectives of the Global action plan is to strengthen the evidence base through enhanced global surveillance and research. The Global Antimicrobial Resistance Surveillance System (GLASS) has been developed to facilitate and encourage a standardized approach to AMR surveillance globally and in turn support the implementation of the Global action plan on antimicrobial resistance. This manual addresses the early phase of implementation of GLASS, focussing on surveillance of resistance in common human bacterial pathogens. The intended readership of this publication is public health professionals and health authorities responsible for national AMR surveillance. It outlines the GLASS standards and describes the road map for implementation of the system between 2015 and 2019. Further development of GLASS will be based on the lessons learnt during this period"--Publisher's description.
Infectious diseases are the leading cause of death globally, particularly among children and young adults. The spread of new pathogens and the threat of antimicrobial resistance pose particular challenges in combating these diseases. Major Infectious Diseases identifies feasible, cost-effective packages of interventions and strategies across delivery platforms to prevent and treat HIV/AIDS, other sexually transmitted infections, tuberculosis, malaria, adult febrile illness, viral hepatitis, and neglected tropical diseases. The volume emphasizes the need to effectively address emerging antimicrobial resistance, strengthen health systems, and increase access to care. The attainable goals are to reduce incidence, develop innovative approaches, and optimize existing tools in resource-constrained settings.