Algorithms for Satellite Orbital Dynamics

Algorithms for Satellite Orbital Dynamics

Author: Lin Liu

Publisher: Springer

Published: 2022-12-18

Total Pages: 0

ISBN-13: 9789811948381

DOWNLOAD EBOOK

This book highlights the fundamental physics of orbit theory, dynamical models, methods of orbit determination, design, measurement, adjustment, and complete calculations for the position, tracking, and prediction of satellites and deep spacecraft. It emphasizes specific methods, related mathematical calculations, and worked examples and exercises. Therefore, technicians and engineers in the aerospace industry can directly apply them to their practical work. Dedicated to undergraduate students and graduate students, researchers, and professionals in astronomy, physics, space science, and related aerospace industries, the book is an integrated work based on the accumulated knowledge in satellite orbit dynamics and the author’s more than five decades of personal research and teaching experience in astronomy and aerospace dynamics.


Algorithms for Satellite Orbital Dynamics

Algorithms for Satellite Orbital Dynamics

Author: Lin Liu

Publisher: Springer Nature

Published: 2023-06-20

Total Pages: 576

ISBN-13: 9811948399

DOWNLOAD EBOOK

This book highlights the fundamental physics of orbit theory, dynamical models, methods of orbit determination, design, measurement, adjustment, and complete calculations for the position, tracking, and prediction of satellites and deep spacecraft. It emphasizes specific methods, related mathematical calculations, and worked examples and exercises. Therefore, technicians and engineers in the aerospace industry can directly apply them to their practical work. Dedicated to undergraduate students and graduate students, researchers, and professionals in astronomy, physics, space science, and related aerospace industries, the book is an integrated work based on the accumulated knowledge in satellite orbit dynamics and the author’s more than five decades of personal research and teaching experience in astronomy and aerospace dynamics.


Orbital Mechanics for Engineering Students

Orbital Mechanics for Engineering Students

Author: Howard D. Curtis

Publisher: Elsevier

Published: 2009-10-26

Total Pages: 740

ISBN-13: 0080887848

DOWNLOAD EBOOK

Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems


Satellite Orbits

Satellite Orbits

Author: Oliver Montenbruck

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 378

ISBN-13: 3642583512

DOWNLOAD EBOOK

This modern presentation guides readers through the theory and practice of satellite orbit prediction and determination. Starting from the basic principles of orbital mechanics, it covers elaborate force models as well as precise methods of satellite tracking. The accompanying CD-ROM includes source code in C++ and relevant data files for applications. The result is a powerful and unique spaceflight dynamics library, which allows users to easily create software extensions. An extensive collection of frequently updated Internet resources is provided through WWW hyperlinks.


Continuing Kepler's Quest

Continuing Kepler's Quest

Author: National Research Council

Publisher: National Academies Press

Published: 2012-09-06

Total Pages: 82

ISBN-13: 0309261457

DOWNLOAD EBOOK

In February 2009, the commercial communications satellite Iridium 33 collided with the Russian military communications satellite Cosmos 2251. The collision, which was not the first recorded between two satellites in orbit-but the most recent and alarming-produced thousands of pieces of debris, only a small percentage of which could be tracked by sensors located around the world. In early 2007, China tested a kinetic anti-satellite weapon against one of its own satellites, which also generated substantial amounts of space debris. These collisions highlighted the importance of maintaining accurate knowledge, and the associated uncertainty, of the orbit of each object in space. These data are needed to predict close approaches of space objects and to compute the probability of collision so that owners/operators can decide whether or not to make a collision avoidance maneuver by a spacecraft with such capability. The space object catalog currently contains more than 20,000 objects, and when the planned space fence radar becomes operational this number is expected to exceed 100,000. A key task is to determine if objects might come closer to each other, an event known as "conjunction," and the probability that they might collide. The U.S. Air Force is the primary U.S. government organization tasked with maintaining the space object catalog and data on all space objects. This is a complicated task, involving collecting data from a multitude of different sensors-many of which were not specifically designed to track orbiting objects-and fusing the tracking data along with other data, such as data from atmospheric models, to provide predictions of where objects will be in the future. The Committee for the Assessment of the U.S. Air Force's Astrodynamic Standards collected data and heard from numerous people involved in developing and maintaining the current astrodynamics standards for the Air Force Space Command (AFSPC), as well as representatives of the user community, such as NASA and commercial satellite owners and operators. Preventing collisions of space objects, regardless of their ownership, is in the national security interested of the United States. Continuing Kepler's Quest makes recommendations to the AFSPC in order for it to create and expand research programs, design and develop hardware and software, as well as determine which organizations to work with to achieve its goals.


Orbital Mechanics

Orbital Mechanics

Author: John E. Prussing

Publisher: Oxford University Press, USA

Published: 2013

Total Pages: 0

ISBN-13: 9780199837700

DOWNLOAD EBOOK

For nearly two decades, Orbital Mechanics by John E. Prussing and Bruce A. Conway has been the most authoritative textbook on space trajectories and orbital transfers. Completely revised and updated, this edition provides: * Current data and statistics, along with coverage of new research and the most recent developments in the field * Three new chapters: "The Three-Body Problem" (Ch. 4), "Continuous-Thrust Transfer" (Ch. 8), and "Canonical Systems and the Lagrange Equations" (Ch. 12) * New material on multiple-revolution Lambert solutions, gravity-assist applications, and the state transition matrix for a general conic orbit * New examples and problems throughout * A new Companion Website with PowerPoint slides (www.oup.com/us/prussing)


Statistical Orbit Determination

Statistical Orbit Determination

Author: Bob Schutz

Publisher: Elsevier

Published: 2004-06-26

Total Pages: 563

ISBN-13: 0080541739

DOWNLOAD EBOOK

Statistical Orbit Determination presents fundmentals of orbit determination--from weighted least squares approaches (Gauss) to today's high-speed computer algorithms that provide accuracy within a few centimeters. Numerous examples and problems are provided to enhance readers' understanding of the material. - Covers such topics as coordinate and time systems, square root filters, process noise techniques, and the use of fictitious parameters for absorbing un-modeled and incorrectly modeled forces acting on a satellite. - Examples and exercises serve to illustrate the principles throughout each chapter.


Spacecraft Dynamics and Control

Spacecraft Dynamics and Control

Author: Marcel J. Sidi

Publisher: Cambridge University Press

Published: 2000-07-03

Total Pages: 434

ISBN-13: 1139936131

DOWNLOAD EBOOK

Satellites are used increasingly in telecommunications, scientific research, surveillance, and meteorology, and these satellites rely heavily on the effectiveness of complex onboard control systems. This 1997 book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis throughout is on analyzing and solving real-world engineering problems. For example, the author discusses orbital and rotational dynamics of spacecraft under a variety of environmental conditions, along with the realistic constraints imposed by available hardware. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing.


Modern Astrodynamics

Modern Astrodynamics

Author: Victor R. Bond

Publisher: Princeton University Press

Published: 1996-03-24

Total Pages: 263

ISBN-13: 0691044597

DOWNLOAD EBOOK

Newton's laws of motion and his universal law of gravitation described mathematically the motion of two bodies undergoing mutual gravitational attraction. However, it is impossible to solve analytically the equation of motion for three gravitationally interacting bodies. This book discusses some techniques used to obtain numerical solutions of the equations of motion for planets and satellites, which are of fundamental importance to solar-system dynamicists and to those involved in planning the orbits of artificial satellites. The first part introduces the classical two-body problem and solves it by rigorously developing the six integrals of the motion, starting from Newton's three laws of motion and his law of gravitation and then using vector algebra to develop the integrals. The various forms of the solution flow naturally from the integrals. In the second part, several modern perturbation techniques are developed and applied to cases of practical importance. For example, the perturbed two-body problem for an oblate planet or for a nonsymmetric rotating planet is considered, as is the effect of drag on a satellite. The two-body problem is regularized, and the nonlinear differential equation is thereby transformed to a linear one by further embedding several of the integrals. Finally, a brief sketch of numerical methods is given, as the perturbation equations must be solved by numerical rather than by analytical methods.


Satellite Dynamics

Satellite Dynamics

Author: G.E.O. Giacaglia

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 385

ISBN-13: 3642463193

DOWNLOAD EBOOK

This volume includes original papers presented at the 4th Symposium on Satellite Dynamics held at the XII Annual Plenary Meeting of COSPAR. At a time where it might be thought that very few problems were left un solved in celestial mechanics, we discover that new and more challenging questions must be answered. The pre cision of observations reaches the centimeter level and physical phenomena which had been disregarded come into play. We need a better treatment of atmospheric drag, radiation forces, and a better knowledge of the earth's gravitational field. Time has to be precisely defined as well as reference systems, including improved values for precision and nutation. The question of resonances introduced by nonzonal harmonics was to be carefully in vestigated. Numerical integration techniques must be optimized and means of controlling their errors improved. Analytical techniques must be made appropriate for com puter processing. Presently existing methods of solu tions of differential equations of interest to celestial mechanics are getting cumbersome as all these new facts come to light. It is clear that entirely new and more effective methods are necessary. These methods must, among other requirements, take into account the essential nonlinear character of the equations. Finally, the mo tion about the center of mass of a satellite is becoming an essential need for the thorough understanding and de scription of the orbital motion.